File size: 7,769 Bytes
58b21d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5

Usage:
    import torch
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # official model
    model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')  # from branch
    model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')  # custom/local model
    model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')  # local repo
"""

import torch


def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    """Creates or loads a YOLOv5 model

    Arguments:
        name (str): model name 'yolov5s' or path 'path/to/best.pt'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
        verbose (bool): print all information to screen
        device (str, torch.device, None): device to use for model parameters

    Returns:
        YOLOv5 model
    """
    from pathlib import Path

    from models.common import AutoShape, DetectMultiBackend
    from models.experimental import attempt_load
    from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
    from utils.downloads import attempt_download
    from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
    from utils.torch_utils import select_device

    if not verbose:
        LOGGER.setLevel(logging.WARNING)
    check_requirements(ROOT / 'requirements.txt', exclude=('opencv-python', 'tensorboard', 'thop'))
    name = Path(name)
    path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name  # checkpoint path
    try:
        device = select_device(device)
        if pretrained and channels == 3 and classes == 80:
            try:
                model = DetectMultiBackend(path, device=device, fuse=autoshape)  # detection model
                if autoshape:
                    if model.pt and isinstance(model.model, ClassificationModel):
                        LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
                                       'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
                    elif model.pt and isinstance(model.model, SegmentationModel):
                        LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
                                       'You will not be able to run inference with this model.')
                    else:
                        model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
            except Exception:
                model = attempt_load(path, device=device, fuse=False)  # arbitrary model
        else:
            cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0]  # model.yaml path
            model = DetectionModel(cfg, channels, classes)  # create model
            if pretrained:
                ckpt = torch.load(attempt_download(path), map_location=device)  # load
                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
                csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors'])  # intersect
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt['model'].names) == classes:
                    model.names = ckpt['model'].names  # set class names attribute
        if not verbose:
            LOGGER.setLevel(logging.INFO)  # reset to default
        return model.to(device)

    except Exception as e:
        help_url = 'https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading'
        s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
        raise Exception(s) from e


def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
    # YOLOv5 custom or local model
    return _create(path, autoshape=autoshape, verbose=_verbose, device=device)


def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-nano model https://github.com/ultralytics/yolov5
    return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-small model https://github.com/ultralytics/yolov5
    return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-medium model https://github.com/ultralytics/yolov5
    return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-large model https://github.com/ultralytics/yolov5
    return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
    return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)


def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
    # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)


if __name__ == '__main__':
    import argparse
    from pathlib import Path

    import numpy as np
    from PIL import Image

    from utils.general import cv2, print_args

    # Argparser
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='yolov5s', help='model name')
    opt = parser.parse_args()
    print_args(vars(opt))

    # Model
    model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
    # model = custom(path='path/to/model.pt')  # custom

    # Images
    imgs = [
        'data/images/zidane.jpg',  # filename
        Path('data/images/zidane.jpg'),  # Path
        'https://ultralytics.com/images/zidane.jpg',  # URI
        cv2.imread('data/images/bus.jpg')[:, :, ::-1],  # OpenCV
        Image.open('data/images/bus.jpg'),  # PIL
        np.zeros((320, 640, 3))]  # numpy

    # Inference
    results = model(imgs, size=320)  # batched inference

    # Results
    results.print()
    results.save()