Spaces:
Running
Running
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
Run YOLOv5 segmentation inference on images, videos, directories, streams, etc. | |
Usage - sources: | |
$ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam | |
img.jpg # image | |
vid.mp4 # video | |
screen # screenshot | |
path/ # directory | |
list.txt # list of images | |
list.streams # list of streams | |
'path/*.jpg' # glob | |
'https://youtu.be/LNwODJXcvt4' # YouTube | |
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
Usage - formats: | |
$ python segment/predict.py --weights yolov5s-seg.pt # PyTorch | |
yolov5s-seg.torchscript # TorchScript | |
yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov5s-seg_openvino_model # OpenVINO | |
yolov5s-seg.engine # TensorRT | |
yolov5s-seg.mlmodel # CoreML (macOS-only) | |
yolov5s-seg_saved_model # TensorFlow SavedModel | |
yolov5s-seg.pb # TensorFlow GraphDef | |
yolov5s-seg.tflite # TensorFlow Lite | |
yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU | |
yolov5s-seg_paddle_model # PaddlePaddle | |
""" | |
import argparse | |
import os | |
import platform | |
import sys | |
from pathlib import Path | |
import torch | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from ultralytics.utils.plotting import Annotator, colors, save_one_box | |
from models.common import DetectMultiBackend | |
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams | |
from utils.general import ( | |
LOGGER, | |
Profile, | |
check_file, | |
check_img_size, | |
check_imshow, | |
check_requirements, | |
colorstr, | |
cv2, | |
increment_path, | |
non_max_suppression, | |
print_args, | |
scale_boxes, | |
scale_segments, | |
strip_optimizer, | |
) | |
from utils.segment.general import masks2segments, process_mask, process_mask_native | |
from utils.torch_utils import select_device, smart_inference_mode | |
def run( | |
weights=ROOT / "yolov5s-seg.pt", # model.pt path(s) | |
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) | |
data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
imgsz=(640, 640), # inference size (height, width) | |
conf_thres=0.25, # confidence threshold | |
iou_thres=0.45, # NMS IOU threshold | |
max_det=1000, # maximum detections per image | |
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
view_img=False, # show results | |
save_txt=False, # save results to *.txt | |
save_conf=False, # save confidences in --save-txt labels | |
save_crop=False, # save cropped prediction boxes | |
nosave=False, # do not save images/videos | |
classes=None, # filter by class: --class 0, or --class 0 2 3 | |
agnostic_nms=False, # class-agnostic NMS | |
augment=False, # augmented inference | |
visualize=False, # visualize features | |
update=False, # update all models | |
project=ROOT / "runs/predict-seg", # save results to project/name | |
name="exp", # save results to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
line_thickness=3, # bounding box thickness (pixels) | |
hide_labels=False, # hide labels | |
hide_conf=False, # hide confidences | |
half=False, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
vid_stride=1, # video frame-rate stride | |
retina_masks=False, | |
): | |
source = str(source) | |
save_img = not nosave and not source.endswith(".txt") # save inference images | |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) | |
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) | |
screenshot = source.lower().startswith("screen") | |
if is_url and is_file: | |
source = check_file(source) # download | |
# Directories | |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | |
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
# Load model | |
device = select_device(device) | |
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) | |
stride, names, pt = model.stride, model.names, model.pt | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
# Dataloader | |
bs = 1 # batch_size | |
if webcam: | |
view_img = check_imshow(warn=True) | |
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) | |
bs = len(dataset) | |
elif screenshot: | |
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) | |
else: | |
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) | |
vid_path, vid_writer = [None] * bs, [None] * bs | |
# Run inference | |
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup | |
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device)) | |
for path, im, im0s, vid_cap, s in dataset: | |
with dt[0]: | |
im = torch.from_numpy(im).to(model.device) | |
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 | |
im /= 255 # 0 - 255 to 0.0 - 1.0 | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
# Inference | |
with dt[1]: | |
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False | |
pred, proto = model(im, augment=augment, visualize=visualize)[:2] | |
# NMS | |
with dt[2]: | |
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32) | |
# Second-stage classifier (optional) | |
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | |
# Process predictions | |
for i, det in enumerate(pred): # per image | |
seen += 1 | |
if webcam: # batch_size >= 1 | |
p, im0, frame = path[i], im0s[i].copy(), dataset.count | |
s += f"{i}: " | |
else: | |
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) | |
p = Path(p) # to Path | |
save_path = str(save_dir / p.name) # im.jpg | |
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt | |
s += "%gx%g " % im.shape[2:] # print string | |
imc = im0.copy() if save_crop else im0 # for save_crop | |
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) | |
if len(det): | |
if retina_masks: | |
# scale bbox first the crop masks | |
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size | |
masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC | |
else: | |
masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC | |
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # rescale boxes to im0 size | |
# Segments | |
if save_txt: | |
segments = [ | |
scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True) | |
for x in reversed(masks2segments(masks)) | |
] | |
# Print results | |
for c in det[:, 5].unique(): | |
n = (det[:, 5] == c).sum() # detections per class | |
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
# Mask plotting | |
annotator.masks( | |
masks, | |
colors=[colors(x, True) for x in det[:, 5]], | |
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() | |
/ 255 | |
if retina_masks | |
else im[i], | |
) | |
# Write results | |
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])): | |
if save_txt: # Write to file | |
seg = segments[j].reshape(-1) # (n,2) to (n*2) | |
line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format | |
with open(f"{txt_path}.txt", "a") as f: | |
f.write(("%g " * len(line)).rstrip() % line + "\n") | |
if save_img or save_crop or view_img: # Add bbox to image | |
c = int(cls) # integer class | |
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}") | |
annotator.box_label(xyxy, label, color=colors(c, True)) | |
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3) | |
if save_crop: | |
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True) | |
# Stream results | |
im0 = annotator.result() | |
if view_img: | |
if platform.system() == "Linux" and p not in windows: | |
windows.append(p) | |
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) | |
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) | |
cv2.imshow(str(p), im0) | |
if cv2.waitKey(1) == ord("q"): # 1 millisecond | |
exit() | |
# Save results (image with detections) | |
if save_img: | |
if dataset.mode == "image": | |
cv2.imwrite(save_path, im0) | |
else: # 'video' or 'stream' | |
if vid_path[i] != save_path: # new video | |
vid_path[i] = save_path | |
if isinstance(vid_writer[i], cv2.VideoWriter): | |
vid_writer[i].release() # release previous video writer | |
if vid_cap: # video | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: # stream | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos | |
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) | |
vid_writer[i].write(im0) | |
# Print time (inference-only) | |
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") | |
# Print results | |
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image | |
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t) | |
if save_txt or save_img: | |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" | |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
if update: | |
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)") | |
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)") | |
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path") | |
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") | |
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold") | |
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold") | |
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image") | |
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") | |
parser.add_argument("--view-img", action="store_true", help="show results") | |
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") | |
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") | |
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes") | |
parser.add_argument("--nosave", action="store_true", help="do not save images/videos") | |
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3") | |
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS") | |
parser.add_argument("--augment", action="store_true", help="augmented inference") | |
parser.add_argument("--visualize", action="store_true", help="visualize features") | |
parser.add_argument("--update", action="store_true", help="update all models") | |
parser.add_argument("--project", default=ROOT / "runs/predict-seg", help="save results to project/name") | |
parser.add_argument("--name", default="exp", help="save results to project/name") | |
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") | |
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)") | |
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels") | |
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences") | |
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") | |
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") | |
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride") | |
parser.add_argument("--retina-masks", action="store_true", help="whether to plot masks in native resolution") | |
opt = parser.parse_args() | |
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) | |
run(**vars(opt)) | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |