Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import cv2 | |
import os | |
from My_Model.utilities import get_path, show_image, show_image_with_matplotlib | |
import transformers | |
class ObjectDetector: | |
def __init__(self): | |
self.model = None | |
self.processor = None | |
self.model_name = None | |
def load_model(self, model_name='detic', pretrained=True, model_version='yolov5s'): | |
""" | |
Load the specified object detection model. | |
:param model_name: Name of the model to load. | |
:param pretrained: Boolean indicating if pretrained model should be used. | |
:param model_version: Version of the model, applicable for YOLOv5. | |
""" | |
self.model_name = model_name | |
if model_name == 'detic': | |
self.load_detic_model(pretrained) | |
elif model_name == 'yolov5': | |
self.load_yolov5_model(pretrained, model_version) | |
else: | |
raise ValueError("Unsupported model name") | |
def load_detic_model(self, pretrained): | |
"""Load the Detic model.""" | |
try: | |
model_path = get_path('deformable-detr-detic', 'Models') | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
self.processor = AutoImageProcessor.from_pretrained(model_path) | |
self.model = AutoModelForObjectDetection.from_pretrained(model_path) | |
except Exception as e: | |
print(f"Error loading Detic model: {e}") | |
def load_yolov5_model(self, pretrained, model_version): | |
"""Load the YOLOv5 model.""" | |
try: | |
model_path = get_path('yolov5', 'Models') | |
if model_path and os.path.exists(model_path): | |
with os.scandir(model_path) as main_dir: | |
self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source="local") | |
else: | |
self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained) | |
except Exception as e: | |
print(f"Error loading YOLOv5 model: {e}") | |
def process_image(self, image_path: str) -> Image.Image: | |
""" | |
Process the image from the given path. | |
:param image_path: Path to the image file. | |
:return: Processed image. | |
""" | |
with Image.open(image_path) as image: | |
return image.convert("RGB") | |
def detect_objects(self, image: Image.Image, threshold: float = 0.4): | |
""" | |
Detect objects in the given image. | |
:param image: Image in which to detect objects. | |
:param threshold: Detection threshold. | |
:return: Tuple of detected objects string and list. | |
""" | |
detected_objects_str, detected_objects_list = "", [] | |
if self.model_name == 'detic': | |
detected_objects_str, detected_objects_list = self.detect_with_detic(image, threshold) | |
elif self.model_name == 'yolov5': | |
detected_objects_str, detected_objects_list = self.detect_with_yolov5(image, threshold) | |
return detected_objects_str.strip(), detected_objects_list | |
def detect_with_detic(self, image: Image.Image, threshold: float): | |
"""Detect objects using Detic model.""" | |
inputs = self.processor(images=image, return_tensors="pt") | |
outputs = self.model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[ | |
0] | |
detected_objects_str = "" | |
detected_objects_list = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
if score >= threshold: | |
label_name = self.model.config.id2label[label.item()] | |
box_rounded = [round(coord, 2) for coord in box.tolist()] | |
certainty = round(score.item() * 100, 2) | |
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n" | |
detected_objects_list.append((label_name, box_rounded, certainty)) | |
return detected_objects_str, detected_objects_list | |
def detect_with_yolov5(self, image: Image.Image, threshold: float): | |
"""Detect objects using YOLOv5 model.""" | |
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
results = self.model(cv2_img) | |
detected_objects_str = "" | |
detected_objects_list = [] | |
for *bbox, conf, cls in results.xyxy[0]: | |
if conf >= threshold: | |
label_name = results.names[int(cls)] | |
box_rounded = [round(coord.item(), 2) for coord in bbox] # Convert each tensor to float and round | |
certainty = round(conf.item() * 100, 2) | |
detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n" | |
detected_objects_list.append((label_name, box_rounded, certainty)) | |
return detected_objects_str, detected_objects_list | |
def draw_boxes(self, image: Image.Image, detected_objects: list, show_confidence: bool = True) -> Image.Image: | |
""" | |
Draw bounding boxes around detected objects in the image. | |
:param image: Image on which to draw. | |
:param detected_objects: List of detected objects. | |
:param show_confidence: Boolean to show confidence scores. | |
:return: Image with drawn boxes. | |
""" | |
draw = ImageDraw.Draw(image) | |
try: | |
font = ImageFont.truetype("arial.ttf", 15) | |
except IOError: | |
font = ImageFont.load_default() | |
colors = ["red", "green", "blue", "yellow", "purple", "orange"] | |
label_color_map = {} | |
for label_name, box, score in detected_objects: | |
if label_name not in label_color_map: | |
label_color_map[label_name] = colors[len(label_color_map) % len(colors)] | |
color = label_color_map[label_name] | |
draw.rectangle(box, outline=color, width=3) | |
label_text = f"{label_name}" | |
if show_confidence: | |
label_text += f" ({round(score, 2)}%)" | |
draw.text((box[0], box[1]), label_text, fill=color, font=font) | |
return image | |
if __name__=="__main__": | |
detector = ObjectDetector() | |
image_path = get_path('horse.jpg', 'Sample_Images') | |
detector.load_model('yolov5') # pass either 'detic' or 'yolov5' | |
image = detector.process_image(image_path) | |
detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=0.2) | |
image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=False) | |
print(detected_objects_string) | |
show_image(image_with_boxes) | |
#show_image_with_matplotlib(image_path) |