Spaces:
Sleeping
Sleeping
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
Validate a trained YOLOv5 classification model on a classification dataset | |
Usage: | |
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) | |
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet | |
Usage - formats: | |
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch | |
yolov5s-cls.torchscript # TorchScript | |
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov5s-cls_openvino_model # OpenVINO | |
yolov5s-cls.engine # TensorRT | |
yolov5s-cls.mlmodel # CoreML (macOS-only) | |
yolov5s-cls_saved_model # TensorFlow SavedModel | |
yolov5s-cls.pb # TensorFlow GraphDef | |
yolov5s-cls.tflite # TensorFlow Lite | |
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU | |
yolov5s-cls_paddle_model # PaddlePaddle | |
""" | |
import argparse | |
import os | |
import sys | |
from pathlib import Path | |
import torch | |
from tqdm import tqdm | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from models.common import DetectMultiBackend | |
from utils.dataloaders import create_classification_dataloader | |
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr, | |
increment_path, print_args) | |
from utils.torch_utils import select_device, smart_inference_mode | |
def run( | |
data=ROOT / '../datasets/mnist', # dataset dir | |
weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s) | |
batch_size=128, # batch size | |
imgsz=224, # inference size (pixels) | |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
workers=8, # max dataloader workers (per RANK in DDP mode) | |
verbose=False, # verbose output | |
project=ROOT / 'runs/val-cls', # save to project/name | |
name='exp', # save to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
half=False, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
model=None, | |
dataloader=None, | |
criterion=None, | |
pbar=None, | |
): | |
# Initialize/load model and set device | |
training = model is not None | |
if training: # called by train.py | |
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model | |
half &= device.type != 'cpu' # half precision only supported on CUDA | |
model.half() if half else model.float() | |
else: # called directly | |
device = select_device(device, batch_size=batch_size) | |
# Directories | |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | |
save_dir.mkdir(parents=True, exist_ok=True) # make dir | |
# Load model | |
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) | |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
half = model.fp16 # FP16 supported on limited backends with CUDA | |
if engine: | |
batch_size = model.batch_size | |
else: | |
device = model.device | |
if not (pt or jit): | |
batch_size = 1 # export.py models default to batch-size 1 | |
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') | |
# Dataloader | |
data = Path(data) | |
test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val | |
dataloader = create_classification_dataloader(path=test_dir, | |
imgsz=imgsz, | |
batch_size=batch_size, | |
augment=False, | |
rank=-1, | |
workers=workers) | |
model.eval() | |
pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile()) | |
n = len(dataloader) # number of batches | |
action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing' | |
desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}' | |
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0) | |
with torch.cuda.amp.autocast(enabled=device.type != 'cpu'): | |
for images, labels in bar: | |
with dt[0]: | |
images, labels = images.to(device, non_blocking=True), labels.to(device) | |
with dt[1]: | |
y = model(images) | |
with dt[2]: | |
pred.append(y.argsort(1, descending=True)[:, :5]) | |
targets.append(labels) | |
if criterion: | |
loss += criterion(y, labels) | |
loss /= n | |
pred, targets = torch.cat(pred), torch.cat(targets) | |
correct = (targets[:, None] == pred).float() | |
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy | |
top1, top5 = acc.mean(0).tolist() | |
if pbar: | |
pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}' | |
if verbose: # all classes | |
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}") | |
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}") | |
for i, c in model.names.items(): | |
acc_i = acc[targets == i] | |
top1i, top5i = acc_i.mean(0).tolist() | |
LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}') | |
# Print results | |
t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image | |
shape = (1, 3, imgsz, imgsz) | |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t) | |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") | |
return top1, top5, loss | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path') | |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)') | |
parser.add_argument('--batch-size', type=int, default=128, help='batch size') | |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') | |
parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output') | |
parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name') | |
parser.add_argument('--name', default='exp', help='save to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') | |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') | |
opt = parser.parse_args() | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) | |
run(**vars(opt)) | |
if __name__ == '__main__': | |
opt = parse_opt() | |
main(opt) | |