m7mdal7aj's picture
Upload 178 files
58b21d4 verified
raw
history blame
4.75 kB
import logging
import os
from urllib.parse import urlparse
try:
import comet_ml
except (ModuleNotFoundError, ImportError):
comet_ml = None
import yaml
logger = logging.getLogger(__name__)
COMET_PREFIX = 'comet://'
COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')
COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv('COMET_DEFAULT_CHECKPOINT_FILENAME', 'last.pt')
def download_model_checkpoint(opt, experiment):
model_dir = f'{opt.project}/{experiment.name}'
os.makedirs(model_dir, exist_ok=True)
model_name = COMET_MODEL_NAME
model_asset_list = experiment.get_model_asset_list(model_name)
if len(model_asset_list) == 0:
logger.error(f'COMET ERROR: No checkpoints found for model name : {model_name}')
return
model_asset_list = sorted(
model_asset_list,
key=lambda x: x['step'],
reverse=True,
)
logged_checkpoint_map = {asset['fileName']: asset['assetId'] for asset in model_asset_list}
resource_url = urlparse(opt.weights)
checkpoint_filename = resource_url.query
if checkpoint_filename:
asset_id = logged_checkpoint_map.get(checkpoint_filename)
else:
asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
if asset_id is None:
logger.error(f'COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment')
return
try:
logger.info(f'COMET INFO: Downloading checkpoint {checkpoint_filename}')
asset_filename = checkpoint_filename
model_binary = experiment.get_asset(asset_id, return_type='binary', stream=False)
model_download_path = f'{model_dir}/{asset_filename}'
with open(model_download_path, 'wb') as f:
f.write(model_binary)
opt.weights = model_download_path
except Exception as e:
logger.warning('COMET WARNING: Unable to download checkpoint from Comet')
logger.exception(e)
def set_opt_parameters(opt, experiment):
"""Update the opts Namespace with parameters
from Comet's ExistingExperiment when resuming a run
Args:
opt (argparse.Namespace): Namespace of command line options
experiment (comet_ml.APIExperiment): Comet API Experiment object
"""
asset_list = experiment.get_asset_list()
resume_string = opt.resume
for asset in asset_list:
if asset['fileName'] == 'opt.yaml':
asset_id = asset['assetId']
asset_binary = experiment.get_asset(asset_id, return_type='binary', stream=False)
opt_dict = yaml.safe_load(asset_binary)
for key, value in opt_dict.items():
setattr(opt, key, value)
opt.resume = resume_string
# Save hyperparameters to YAML file
# Necessary to pass checks in training script
save_dir = f'{opt.project}/{experiment.name}'
os.makedirs(save_dir, exist_ok=True)
hyp_yaml_path = f'{save_dir}/hyp.yaml'
with open(hyp_yaml_path, 'w') as f:
yaml.dump(opt.hyp, f)
opt.hyp = hyp_yaml_path
def check_comet_weights(opt):
"""Downloads model weights from Comet and updates the
weights path to point to saved weights location
Args:
opt (argparse.Namespace): Command Line arguments passed
to YOLOv5 training script
Returns:
None/bool: Return True if weights are successfully downloaded
else return None
"""
if comet_ml is None:
return
if isinstance(opt.weights, str):
if opt.weights.startswith(COMET_PREFIX):
api = comet_ml.API()
resource = urlparse(opt.weights)
experiment_path = f'{resource.netloc}{resource.path}'
experiment = api.get(experiment_path)
download_model_checkpoint(opt, experiment)
return True
return None
def check_comet_resume(opt):
"""Restores run parameters to its original state based on the model checkpoint
and logged Experiment parameters.
Args:
opt (argparse.Namespace): Command Line arguments passed
to YOLOv5 training script
Returns:
None/bool: Return True if the run is restored successfully
else return None
"""
if comet_ml is None:
return
if isinstance(opt.resume, str):
if opt.resume.startswith(COMET_PREFIX):
api = comet_ml.API()
resource = urlparse(opt.resume)
experiment_path = f'{resource.netloc}{resource.path}'
experiment = api.get(experiment_path)
set_opt_parameters(opt, experiment)
download_model_checkpoint(opt, experiment)
return True
return None