Spaces:
Sleeping
Sleeping
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
Model validation metrics | |
""" | |
import numpy as np | |
from ..metrics import ap_per_class | |
def fitness(x): | |
# Model fitness as a weighted combination of metrics | |
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9] | |
return (x[:, :8] * w).sum(1) | |
def ap_per_class_box_and_mask( | |
tp_m, | |
tp_b, | |
conf, | |
pred_cls, | |
target_cls, | |
plot=False, | |
save_dir='.', | |
names=(), | |
): | |
""" | |
Args: | |
tp_b: tp of boxes. | |
tp_m: tp of masks. | |
other arguments see `func: ap_per_class`. | |
""" | |
results_boxes = ap_per_class(tp_b, | |
conf, | |
pred_cls, | |
target_cls, | |
plot=plot, | |
save_dir=save_dir, | |
names=names, | |
prefix='Box')[2:] | |
results_masks = ap_per_class(tp_m, | |
conf, | |
pred_cls, | |
target_cls, | |
plot=plot, | |
save_dir=save_dir, | |
names=names, | |
prefix='Mask')[2:] | |
results = { | |
'boxes': { | |
'p': results_boxes[0], | |
'r': results_boxes[1], | |
'ap': results_boxes[3], | |
'f1': results_boxes[2], | |
'ap_class': results_boxes[4]}, | |
'masks': { | |
'p': results_masks[0], | |
'r': results_masks[1], | |
'ap': results_masks[3], | |
'f1': results_masks[2], | |
'ap_class': results_masks[4]}} | |
return results | |
class Metric: | |
def __init__(self) -> None: | |
self.p = [] # (nc, ) | |
self.r = [] # (nc, ) | |
self.f1 = [] # (nc, ) | |
self.all_ap = [] # (nc, 10) | |
self.ap_class_index = [] # (nc, ) | |
def ap50(self): | |
"""[email protected] of all classes. | |
Return: | |
(nc, ) or []. | |
""" | |
return self.all_ap[:, 0] if len(self.all_ap) else [] | |
def ap(self): | |
"""[email protected]:0.95 | |
Return: | |
(nc, ) or []. | |
""" | |
return self.all_ap.mean(1) if len(self.all_ap) else [] | |
def mp(self): | |
"""mean precision of all classes. | |
Return: | |
float. | |
""" | |
return self.p.mean() if len(self.p) else 0.0 | |
def mr(self): | |
"""mean recall of all classes. | |
Return: | |
float. | |
""" | |
return self.r.mean() if len(self.r) else 0.0 | |
def map50(self): | |
"""Mean [email protected] of all classes. | |
Return: | |
float. | |
""" | |
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 | |
def map(self): | |
"""Mean [email protected]:0.95 of all classes. | |
Return: | |
float. | |
""" | |
return self.all_ap.mean() if len(self.all_ap) else 0.0 | |
def mean_results(self): | |
"""Mean of results, return mp, mr, map50, map""" | |
return (self.mp, self.mr, self.map50, self.map) | |
def class_result(self, i): | |
"""class-aware result, return p[i], r[i], ap50[i], ap[i]""" | |
return (self.p[i], self.r[i], self.ap50[i], self.ap[i]) | |
def get_maps(self, nc): | |
maps = np.zeros(nc) + self.map | |
for i, c in enumerate(self.ap_class_index): | |
maps[c] = self.ap[i] | |
return maps | |
def update(self, results): | |
""" | |
Args: | |
results: tuple(p, r, ap, f1, ap_class) | |
""" | |
p, r, all_ap, f1, ap_class_index = results | |
self.p = p | |
self.r = r | |
self.all_ap = all_ap | |
self.f1 = f1 | |
self.ap_class_index = ap_class_index | |
class Metrics: | |
"""Metric for boxes and masks.""" | |
def __init__(self) -> None: | |
self.metric_box = Metric() | |
self.metric_mask = Metric() | |
def update(self, results): | |
""" | |
Args: | |
results: Dict{'boxes': Dict{}, 'masks': Dict{}} | |
""" | |
self.metric_box.update(list(results['boxes'].values())) | |
self.metric_mask.update(list(results['masks'].values())) | |
def mean_results(self): | |
return self.metric_box.mean_results() + self.metric_mask.mean_results() | |
def class_result(self, i): | |
return self.metric_box.class_result(i) + self.metric_mask.class_result(i) | |
def get_maps(self, nc): | |
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) | |
def ap_class_index(self): | |
# boxes and masks have the same ap_class_index | |
return self.metric_box.ap_class_index | |
KEYS = [ | |
'train/box_loss', | |
'train/seg_loss', # train loss | |
'train/obj_loss', | |
'train/cls_loss', | |
'metrics/precision(B)', | |
'metrics/recall(B)', | |
'metrics/mAP_0.5(B)', | |
'metrics/mAP_0.5:0.95(B)', # metrics | |
'metrics/precision(M)', | |
'metrics/recall(M)', | |
'metrics/mAP_0.5(M)', | |
'metrics/mAP_0.5:0.95(M)', # metrics | |
'val/box_loss', | |
'val/seg_loss', # val loss | |
'val/obj_loss', | |
'val/cls_loss', | |
'x/lr0', | |
'x/lr1', | |
'x/lr2', ] | |
BEST_KEYS = [ | |
'best/epoch', | |
'best/precision(B)', | |
'best/recall(B)', | |
'best/mAP_0.5(B)', | |
'best/mAP_0.5:0.95(B)', | |
'best/precision(M)', | |
'best/recall(M)', | |
'best/mAP_0.5(M)', | |
'best/mAP_0.5:0.95(M)', ] | |