Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import bitsandbytes | |
import accelerate | |
import scipy | |
from PIL import Image | |
import torch.nn as nn | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration | |
def load_caption_model(blip2=False, instructblip=True): | |
if blip2: | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16) | |
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16) | |
if torch.cuda.device_count() > 1: | |
model = nn.DataParallel(model) | |
model.to('cuda') | |
#model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto") | |
if instructblip: | |
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit=True,torch_dtype=torch.float16) | |
if torch.cuda.device_count() > 1: | |
model = nn.DataParallel(model) | |
model.to('cuda') | |
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit=True,torch_dtype=torch.float16) | |
return model, processor | |
def answer_question(image, question, model, processor): | |
image = Image.open(image) | |
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16) | |
if isinstance(model, torch.nn.DataParallel): | |
# Use the 'module' attribute to access the original model | |
out = model.module.generate(**inputs, max_length=100, min_length=20) | |
else: | |
out = model.generate(**inputs, max_length=100, min_length=20) | |
answer = processor.decode(out[0], skip_special_tokens=True).strip() | |
return answer | |
st.title("Image Question Answering") | |
# File uploader for the image | |
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
# Text input for the question | |
question = st.text_input("Enter your question about the image:") | |
if st.button("Get Answer"): | |
if image is not None and question: | |
# Display the image | |
st.image(image, use_column_width=True) | |
# Get and display the answer | |
model, processor = load_caption_model() | |
answer = answer_question(image, question, model, processor) | |
st.write(answer) | |
else: | |
st.write("Please upload an image and enter a question.") |