Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import bitsandbytes | |
import accelerate | |
import scipy | |
from PIL import Image | |
import torch.nn as nn | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration | |
from my_model.object_detection import detect_and_draw_objects | |
from my_model.captioner.image_captioning import get_caption | |
from my_model.utilities import free_gpu_resources | |
# Placeholder for undefined functions | |
def load_caption_model(): | |
st.write("Placeholder for load_caption_model function") | |
return None, None | |
def answer_question(image, question, model, processor): | |
return "Placeholder answer for the question" | |
def detect_and_draw_objects(image, model_name, threshold): | |
return image, "Detected objects" | |
def get_caption(image): | |
return "Generated caption for the image" | |
def free_gpu_resources(): | |
pass | |
# Main function | |
def main(): | |
st.sidebar.title("Navigation") | |
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report", "Object Detection"]) | |
if selection == "Home": | |
display_home() | |
elif selection == "Dissertation Report": | |
display_dissertation_report() | |
elif selection == "Evaluation Results": | |
display_evaluation_results() | |
elif selection == "Dataset Analysis": | |
display_dataset_analysis() | |
elif selection == "Run Inference": | |
run_inference() | |
elif selection == "Object Detection": | |
run_object_detection() | |
def display_home(): | |
st.title("MultiModal Learning for Knowledge-Based Visual Question Answering") | |
st.write("Home page content goes here...") | |
def display_dissertation_report(): | |
st.title("Dissertation Report") | |
st.write("Click the link below to view the PDF.") | |
st.download_button( | |
label="Download PDF", | |
data=open("Files/Dissertation Report.pdf", "rb"), | |
file_name="example.pdf", | |
mime="application/octet-stream" | |
) | |
def display_evaluation_results(): | |
st.title("Evaluation Results") | |
st.write("This is a Place Holder until the contents are uploaded.") | |
def display_dataset_analysis(): | |
st.title("OK-VQA Dataset Analysis") | |
st.write("This is a Place Holder until the contents are uploaded.") | |
def run_inference(): | |
st.title("Image-based Q&A App") | |
# Image-based Q&A functionality | |
image_qa_app() | |
def run_object_detection(): | |
st.title("Object Detection") | |
# Object Detection functionality | |
# ... Implement your code for this section ... | |
def image_qa_app(): | |
# Initialize session state for storing images and their Q&A histories | |
if 'images_qa_history' not in st.session_state: | |
st.session_state['images_qa_history'] = [] | |
# Button to clear all data | |
if st.button('Clear All'): | |
st.session_state['images_qa_history'] = [] | |
st.experimental_rerun() | |
# Image uploader | |
uploaded_image = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) | |
if uploaded_image is not None: | |
image = Image.open(uploaded_image) | |
current_image_key = uploaded_image.name # Use image name as a unique key | |
# Check if the image is already in the history | |
if not any(info['image_key'] == current_image_key for info in st.session_state['images_qa_history']): | |
st.session_state['images_qa_history'].append({ | |
'image_key': current_image_key, | |
'image': image, | |
'qa_history': [] | |
}) | |
# Display all images and their Q&A histories | |
for image_info in st.session_state['images_qa_history']: | |
st.image(image_info['image'], caption='Uploaded Image.', use_column_width=True) | |
for q, a in image_info['qa_history']: | |
st.text(f"Q: {q}\nA: {a}\n") | |
# If the current image is being processed | |
if image_info['image_key'] == current_image_key: | |
# Unique keys for each widget | |
question_key = f"question_{current_image_key}" | |
button_key = f"button_{current_image_key}" | |
# Question input for the current image | |
question = st.text_input("Ask a question about this image:", key=question_key) | |
# Get Answer button for the current image | |
if st.button('Get Answer', key=button_key): | |
# Process the image and question | |
answer = get_answer(image_info['image'], question) # Implement this function | |
image_info['qa_history'].append((question, answer)) | |
st.experimental_rerun() # Rerun to update the display | |
def get_answer(image, question): | |
# Implement the logic to process the image and question, and return the answer | |
return "Sample answer based on the image and question." | |
if __name__ == "__main__": | |
main() | |