KB-VQA / app.py
m7mdal7aj's picture
Update app.py
faace7f verified
raw
history blame
4.9 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
from PIL import Image
import torch.nn as nn
from transformers import Blip2Processor, Blip2ForConditionalGeneration, InstructBlipProcessor, InstructBlipForConditionalGeneration
from my_model.object_detection import ObjectDetector
def load_caption_model(blip2=False, instructblip=True):
if blip2:
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16)
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to('cuda')
#model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")
if instructblip:
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit=True,torch_dtype=torch.float16)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to('cuda')
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit=True,torch_dtype=torch.float16)
return model, processor
def answer_question(image, question, model, processor):
image = Image.open(image)
inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)
if isinstance(model, torch.nn.DataParallel):
# Use the 'module' attribute to access the original model
out = model.module.generate(**inputs, max_length=100, min_length=20)
else:
out = model.generate(**inputs, max_length=100, min_length=20)
answer = processor.decode(out[0], skip_special_tokens=True).strip()
return answer
st.title("Image Question Answering")
# File uploader for the image
image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
# Text input for the question
question = st.text_input("Enter your question about the image:")
if st.button("Get Answer"):
if image is not None and question:
# Display the image
st.image(image, use_column_width=True)
# Get and display the answer
model, processor = load_caption_model()
answer = answer_question(image, question, model, processor)
st.write(answer)
else:
st.write("Please upload an image and enter a question.")
# Object Detection
# Object Detection UI in the sidebar
st.sidebar.title("Object Detection")
# Dropdown to select the model
detect_model = st.sidebar.selectbox("Choose a model for object detection:", ["detic", "yolov5"])
# Slider for threshold with default values based on the model
threshold = st.sidebar.slider("Select Detection Threshold", 0.1, 0.9, 0.2 if detect_model == "yolov5" else 0.4)
# Button to trigger object detection
detect_button = st.sidebar.button("Detect Objects")
def perform_object_detection(image, model_name, threshold):
"""
Perform object detection on the given image using the specified model and threshold.
Args:
image (PIL.Image): The image on which to perform object detection.
model_name (str): The name of the object detection model to use.
threshold (float): The threshold for object detection.
Returns:
PIL.Image, str: The image with drawn bounding boxes and a string of detected objects.
"""
try:
# Perform object detection and draw bounding boxes
processed_image, detected_objects = detect_and_draw_objects(image, model_name, threshold)
return processed_image, detected_objects
except Exception as e:
# Print the error for debugging
print(f"Error in object detection: {e}")
return None, str(e)
# Check if the 'Detect Objects' button was clicked
if detect_button:
if image is not None:
# Open the uploaded image
try:
image = Image.open(image)
# Display the original image
st.image(image, use_column_width=True, caption="Original Image")
# Perform object detection
processed_image, detected_objects = perform_object_detection(image, detect_model, threshold)
#if processed_image:
# Display the image with detected objects
st.image(processed_image, use_column_width=True, caption="Image with Detected Objects")
# Display the detected objects as text
st.write(detected_objects)
#else:
# st.error("Failed to process image for object detection.")
except Exception as e:
st.error(f"Error loading image: {e}")
else:
st.write("Please upload an image for object detection.")