m7mdal7aj commited on
Commit
2770d90
·
verified ·
1 Parent(s): 2437f14

Delete My_Model

Browse files
My_Model/__init__.py DELETED
File without changes
My_Model/object_detection.py DELETED
@@ -1,162 +0,0 @@
1
- import torch
2
- from PIL import Image, ImageDraw, ImageFont
3
- import numpy as np
4
- import cv2
5
- import os
6
- from My_Model.utilities import get_path, show_image, show_image_with_matplotlib
7
- import transformers
8
-
9
- class ObjectDetector:
10
- def __init__(self):
11
- self.model = None
12
- self.processor = None
13
- self.model_name = None
14
-
15
- def load_model(self, model_name='detic', pretrained=True, model_version='yolov5s'):
16
- """
17
- Load the specified object detection model.
18
- :param model_name: Name of the model to load.
19
- :param pretrained: Boolean indicating if pretrained model should be used.
20
- :param model_version: Version of the model, applicable for YOLOv5.
21
- """
22
- self.model_name = model_name
23
- if model_name == 'detic':
24
- self.load_detic_model(pretrained)
25
- elif model_name == 'yolov5':
26
- self.load_yolov5_model(pretrained, model_version)
27
- else:
28
- raise ValueError("Unsupported model name")
29
-
30
-
31
- def load_detic_model(self, pretrained):
32
- """Load the Detic model."""
33
- try:
34
- model_path = get_path('deformable-detr-detic', 'Models')
35
- from transformers import AutoImageProcessor, AutoModelForObjectDetection
36
- self.processor = AutoImageProcessor.from_pretrained(model_path)
37
- self.model = AutoModelForObjectDetection.from_pretrained(model_path)
38
- except Exception as e:
39
- print(f"Error loading Detic model: {e}")
40
-
41
-
42
- def load_yolov5_model(self, pretrained, model_version):
43
- """Load the YOLOv5 model."""
44
- try:
45
- model_path = get_path('yolov5', 'Models')
46
- if model_path and os.path.exists(model_path):
47
- with os.scandir(model_path) as main_dir:
48
- self.model = torch.hub.load(model_path, model_version, pretrained=pretrained, source="local")
49
- else:
50
- self.model = torch.hub.load('ultralytics/yolov5', model_version, pretrained=pretrained)
51
- except Exception as e:
52
- print(f"Error loading YOLOv5 model: {e}")
53
-
54
-
55
- def process_image(self, image_path: str) -> Image.Image:
56
- """
57
- Process the image from the given path.
58
- :param image_path: Path to the image file.
59
- :return: Processed image.
60
- """
61
- with Image.open(image_path) as image:
62
- return image.convert("RGB")
63
-
64
-
65
- def detect_objects(self, image: Image.Image, threshold: float = 0.4):
66
- """
67
- Detect objects in the given image.
68
- :param image: Image in which to detect objects.
69
- :param threshold: Detection threshold.
70
- :return: Tuple of detected objects string and list.
71
- """
72
- detected_objects_str, detected_objects_list = "", []
73
- if self.model_name == 'detic':
74
- detected_objects_str, detected_objects_list = self.detect_with_detic(image, threshold)
75
- elif self.model_name == 'yolov5':
76
- detected_objects_str, detected_objects_list = self.detect_with_yolov5(image, threshold)
77
- return detected_objects_str.strip(), detected_objects_list
78
-
79
-
80
- def detect_with_detic(self, image: Image.Image, threshold: float):
81
- """Detect objects using Detic model."""
82
- inputs = self.processor(images=image, return_tensors="pt")
83
- outputs = self.model(**inputs)
84
- target_sizes = torch.tensor([image.size[::-1]])
85
- results = self.processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[
86
- 0]
87
-
88
- detected_objects_str = ""
89
- detected_objects_list = []
90
- for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
91
- if score >= threshold:
92
- label_name = self.model.config.id2label[label.item()]
93
- box_rounded = [round(coord, 2) for coord in box.tolist()]
94
- certainty = round(score.item() * 100, 2)
95
- detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
96
- detected_objects_list.append((label_name, box_rounded, certainty))
97
- return detected_objects_str, detected_objects_list
98
-
99
-
100
- def detect_with_yolov5(self, image: Image.Image, threshold: float):
101
- """Detect objects using YOLOv5 model."""
102
-
103
- cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
104
- results = self.model(cv2_img)
105
-
106
- detected_objects_str = ""
107
- detected_objects_list = []
108
- for *bbox, conf, cls in results.xyxy[0]:
109
- if conf >= threshold:
110
- label_name = results.names[int(cls)]
111
- box_rounded = [round(coord.item(), 2) for coord in bbox] # Convert each tensor to float and round
112
- certainty = round(conf.item() * 100, 2)
113
- detected_objects_str += f"{{object: {label_name}, bounding box: {box_rounded}, certainty: {certainty}%}}\n"
114
- detected_objects_list.append((label_name, box_rounded, certainty))
115
- return detected_objects_str, detected_objects_list
116
-
117
-
118
- def draw_boxes(self, image: Image.Image, detected_objects: list, show_confidence: bool = True) -> Image.Image:
119
- """
120
- Draw bounding boxes around detected objects in the image.
121
- :param image: Image on which to draw.
122
- :param detected_objects: List of detected objects.
123
- :param show_confidence: Boolean to show confidence scores.
124
- :return: Image with drawn boxes.
125
- """
126
- draw = ImageDraw.Draw(image)
127
- try:
128
- font = ImageFont.truetype("arial.ttf", 15)
129
- except IOError:
130
- font = ImageFont.load_default()
131
-
132
- colors = ["red", "green", "blue", "yellow", "purple", "orange"]
133
- label_color_map = {}
134
-
135
- for label_name, box, score in detected_objects:
136
- if label_name not in label_color_map:
137
- label_color_map[label_name] = colors[len(label_color_map) % len(colors)]
138
-
139
- color = label_color_map[label_name]
140
- draw.rectangle(box, outline=color, width=3)
141
-
142
- label_text = f"{label_name}"
143
- if show_confidence:
144
- label_text += f" ({round(score, 2)}%)"
145
- draw.text((box[0], box[1]), label_text, fill=color, font=font)
146
-
147
- return image
148
-
149
-
150
- if __name__=="__main__":
151
-
152
- detector = ObjectDetector()
153
- image_path = get_path('horse.jpg', 'Sample_Images')
154
-
155
- detector.load_model('yolov5') # pass either 'detic' or 'yolov5'
156
-
157
- image = detector.process_image(image_path)
158
- detected_objects_string, detected_objects_list = detector.detect_objects(image, threshold=0.2)
159
- image_with_boxes = detector.draw_boxes(image, detected_objects_list, show_confidence=False)
160
- print(detected_objects_string)
161
- show_image(image_with_boxes)
162
- #show_image_with_matplotlib(image_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
My_Model/utilities.py DELETED
@@ -1,277 +0,0 @@
1
- import pandas as pd
2
- from collections import Counter
3
- import json
4
- import os
5
- import IPython.display
6
- from PIL import Image
7
- import numpy as np
8
- import torch
9
- from IPython import get_ipython
10
- import sys
11
-
12
-
13
- class VQADataProcessor:
14
- """
15
- A class to process OKVQA dataset.
16
-
17
- Attributes:
18
- questions_file_path (str): The file path for the questions JSON file.
19
- annotations_file_path (str): The file path for the annotations JSON file.
20
- questions (list): List of questions extracted from the JSON file.
21
- annotations (list): List of annotations extracted from the JSON file.
22
- df_questions (DataFrame): DataFrame created from the questions list.
23
- df_answers (DataFrame): DataFrame created from the annotations list.
24
- merged_df (DataFrame): DataFrame resulting from merging questions and answers.
25
- """
26
-
27
- def __init__(self, questions_file_path, annotations_file_path):
28
- """
29
- Initializes the VQADataProcessor with file paths for questions and annotations.
30
-
31
- Parameters:
32
- questions_file_path (str): The file path for the questions JSON file.
33
- annotations_file_path (str): The file path for the annotations JSON file.
34
- """
35
- self.questions_file_path = questions_file_path
36
- self.annotations_file_path = annotations_file_path
37
- self.questions, self.annotations = self.read_json_files()
38
- self.df_questions = pd.DataFrame(self.questions)
39
- self.df_answers = pd.DataFrame(self.annotations)
40
- self.merged_df = None
41
-
42
- def read_json_files(self):
43
- """
44
- Reads the JSON files for questions and annotations.
45
-
46
- Returns:
47
- tuple: A tuple containing two lists: questions and annotations.
48
- """
49
- with open(self.questions_file_path, 'r') as file:
50
- data = json.load(file)
51
- questions = data['questions']
52
-
53
- with open(self.annotations_file_path, 'r') as file:
54
- data = json.load(file)
55
- annotations = data['annotations']
56
-
57
- return questions, annotations
58
-
59
- @staticmethod
60
- def find_most_frequent(my_list):
61
- """
62
- Finds the most frequent item in a list.
63
-
64
- Parameters:
65
- my_list (list): A list of items.
66
-
67
- Returns:
68
- The most frequent item in the list. Returns None if the list is empty.
69
- """
70
- if not my_list:
71
- return None
72
- counter = Counter(my_list)
73
- most_common = counter.most_common(1)
74
- return most_common[0][0]
75
-
76
- def merge_dataframes(self):
77
- """
78
- Merges the questions and answers DataFrames on 'question_id' and 'image_id'.
79
- """
80
- self.merged_df = pd.merge(self.df_questions, self.df_answers, on=['question_id', 'image_id'])
81
-
82
- def join_words_with_hyphen(self, sentence):
83
-
84
- return '-'.join(sentence.split())
85
-
86
- def process_answers(self):
87
- """
88
- Processes the answers by extracting raw and processed answers and finding the most frequent ones.
89
- """
90
- if self.merged_df is not None:
91
- self.merged_df['raw_answers'] = self.merged_df['answers'].apply(lambda x: [ans['raw_answer'] for ans in x])
92
- self.merged_df['processed_answers'] = self.merged_df['answers'].apply(
93
- lambda x: [ans['answer'] for ans in x])
94
- self.merged_df['most_frequent_raw_answer'] = self.merged_df['raw_answers'].apply(self.find_most_frequent)
95
- self.merged_df['most_frequent_processed_answer'] = self.merged_df['processed_answers'].apply(
96
- self.find_most_frequent)
97
- self.merged_df.drop(columns=['answers'], inplace=True)
98
- else:
99
- print("DataFrames have not been merged yet.")
100
-
101
- # Apply the function to the 'most_frequent_processed_answer' column
102
- self.merged_df['single_word_answers'] = self.merged_df['most_frequent_processed_answer'].apply(
103
- self.join_words_with_hyphen)
104
-
105
- def get_processed_data(self):
106
- """
107
- Retrieves the processed DataFrame.
108
-
109
- Returns:
110
- DataFrame: The processed DataFrame. Returns None if the DataFrame is empty or not processed.
111
- """
112
- if self.merged_df is not None:
113
- return self.merged_df
114
- else:
115
- print("DataFrame is empty or not processed yet.")
116
- return None
117
-
118
- def save_to_csv(self, df, saved_file_name):
119
-
120
- if saved_file_name is not None:
121
- if ".csv" not in saved_file_name:
122
- df.to_csv(os.path.join(saved_file_name, ".csv"), index=None)
123
-
124
- else:
125
- df.to_csv(saved_file_name, index=None)
126
-
127
- else:
128
- df.to_csv("data.csv", index=None)
129
-
130
- def display_dataframe(self):
131
- """
132
- Displays the processed DataFrame.
133
- """
134
- if self.merged_df is not None:
135
- print(self.merged_df)
136
- else:
137
- print("DataFrame is empty.")
138
-
139
-
140
- def process_okvqa_dataset(questions_file_path, annotations_file_path, save_to_csv=False, saved_file_name=None):
141
- """
142
- Processes the OK-VQA dataset given the file paths for questions and annotations.
143
-
144
- Parameters:
145
- questions_file_path (str): The file path for the questions JSON file.
146
- annotations_file_path (str): The file path for the annotations JSON file.
147
-
148
- Returns:
149
- DataFrame: The processed DataFrame containing merged and processed VQA data.
150
- """
151
- # Create an instance of the class
152
- processor = VQADataProcessor(questions_file_path, annotations_file_path)
153
-
154
- # Process the data
155
- processor.merge_dataframes()
156
- processor.process_answers()
157
-
158
- # Retrieve the processed DataFrame
159
- processed_data = processor.get_processed_data()
160
-
161
- if save_to_csv:
162
- processor.save_to_csv(processed_data, saved_file_name)
163
-
164
- return processed_data
165
-
166
-
167
- def show_image(image):
168
- """
169
- Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
170
- Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor).
171
-
172
- Args:
173
- image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display.
174
- """
175
- in_jupyter = is_jupyter_notebook()
176
-
177
- # Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor
178
- if isinstance(image, str):
179
-
180
- if os.path.isfile(image):
181
- image = Image.open(image)
182
- else:
183
- raise ValueError("File path provided does not exist.")
184
- elif isinstance(image, np.ndarray):
185
-
186
- if image.ndim == 3 and image.shape[2] in [3, 4]:
187
-
188
- image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image)
189
- else:
190
-
191
- image = Image.fromarray(image)
192
- elif torch.is_tensor(image):
193
-
194
- image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
195
-
196
- # Display the image
197
- if in_jupyter:
198
-
199
- from IPython.display import display
200
- display(image)
201
- else:
202
-
203
- image.show()
204
-
205
- import matplotlib.pyplot as plt
206
-
207
- def show_image_with_matplotlib(image):
208
- if isinstance(image, str):
209
- image = Image.open(image)
210
- elif isinstance(image, np.ndarray):
211
- image = Image.fromarray(image)
212
- elif torch.is_tensor(image):
213
- image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))
214
-
215
- plt.imshow(image)
216
- plt.axis('off') # Turn off axis numbers
217
- plt.show()
218
-
219
-
220
- def is_jupyter_notebook():
221
- """
222
- Check if the code is running in a Jupyter notebook.
223
-
224
- Returns:
225
- bool: True if running in a Jupyter notebook, False otherwise.
226
- """
227
- try:
228
- from IPython import get_ipython
229
- if 'IPKernelApp' not in get_ipython().config:
230
- return False
231
- if 'ipykernel' in str(type(get_ipython())):
232
- return True # Running in Jupyter Notebook
233
- except (NameError, AttributeError):
234
- return False # Not running in Jupyter Notebook
235
-
236
- return False # Default to False if none of the above conditions are met
237
-
238
-
239
- def is_pycharm():
240
- return 'PYCHARM_HOSTED' in os.environ
241
-
242
-
243
- def is_google_colab():
244
- return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
245
-
246
-
247
- def get_path(name, path_type):
248
- """
249
- Generates a path for models, images, or data based on the specified type.
250
-
251
- Args:
252
- name (str): The name of the model, image, or data folder/file.
253
- path_type (str): The type of path needed ('models', 'images', or 'data').
254
-
255
- Returns:
256
- str: The full path to the specified resource.
257
- """
258
- # Get the current working directory (assumed to be inside 'code' folder)
259
- current_dir = os.getcwd()
260
-
261
- # Get the directory one level up (the parent directory)
262
- parent_dir = os.path.dirname(current_dir)
263
-
264
- # Construct the path to the specified folder
265
- folder_path = os.path.join(parent_dir, path_type)
266
-
267
- # Construct the full path to the specific resource
268
- full_path = os.path.join(folder_path, name)
269
-
270
- return full_path
271
-
272
-
273
-
274
- if __name__ == "__main__":
275
- pass
276
- #val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_val.csv")
277
- #train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_train.csv")