Spaces:
Sleeping
Sleeping
adding captioning folder and files
Browse files
my_model/captioner/captioning_config.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
# Configuration parameters
|
4 |
+
MODEL_TYPE = "i_blip"
|
5 |
+
PROMPT = "describe this image in details"
|
6 |
+
MAX_IMAGE_SIZE = 1024
|
7 |
+
MIN_LENGTH = 20
|
8 |
+
MAX_NEW_TOKENS = 100
|
9 |
+
MODEL_PATH = "Salesforce/instructblip-vicuna-7b"
|
10 |
+
LOAD_IN_8BIT = True
|
11 |
+
TORCH_DTYPE = torch.float16
|
12 |
+
DEVICE_MAP = "auto"
|
13 |
+
LOW_CPU_MEM_USAGE = True
|
14 |
+
SKIP_SPECIAL_TOKENS = True
|
my_model/captioner/image_captioning.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import PIL
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
6 |
+
import bitsandbytes
|
7 |
+
import accelerate
|
8 |
+
import captioning_config as config
|
9 |
+
|
10 |
+
|
11 |
+
class ImageCaptioningModel:
|
12 |
+
def __init__(self):
|
13 |
+
self.model_type = config.MODEL_TYPE
|
14 |
+
self.processor = None
|
15 |
+
self.model = None
|
16 |
+
self.prompt = config.PROMPT
|
17 |
+
self.max_image_size = config.MAX_IMAGE_SIZE
|
18 |
+
self.min_length = config.MIN_LENGTH
|
19 |
+
self.max_new_tokens = config.MAX_NEW_TOKENS
|
20 |
+
self.model_path = config.MODEL_PATH
|
21 |
+
self.device_map = config.DEVICE_MAP
|
22 |
+
self.torch_dtype = config.TORCH_DTYPE
|
23 |
+
self.load_in_8bit = config.LOAD_IN_8BIT
|
24 |
+
self.low_cpu_mem_usage = config.LOW_CPU_MEM_USAGE
|
25 |
+
self.skip_secial_tokens = config.SKIP_SPECIAL_TOKENS
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def load_model(self):
|
30 |
+
if self.model_type == 'i_blip':
|
31 |
+
self.processor = InstructBlipProcessor.from_pretrained(self.model_path,
|
32 |
+
load_in_8bit=self.load_in_8bit,
|
33 |
+
torch_dtype=self.torch_dtype,
|
34 |
+
device_map=self.device_map
|
35 |
+
)
|
36 |
+
|
37 |
+
self.model = InstructBlipForConditionalGeneration.from_pretrained(self.model_path,
|
38 |
+
load_in_8bit=self.load_in_8bit,
|
39 |
+
torch_dtype=self.torch_dtype,
|
40 |
+
low_cpu_mem_usage=self.low_cpu_mem_usage,
|
41 |
+
device_map=self.device_map
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def resize_image(self, image, max_image_size=None):
|
46 |
+
if max_image_size is None:
|
47 |
+
max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
48 |
+
h, w = image.size
|
49 |
+
scale = max_image_size / max(h, w)
|
50 |
+
|
51 |
+
if scale < 1:
|
52 |
+
new_w = int(w * scale)
|
53 |
+
new_h = int(h * scale)
|
54 |
+
image = image.resize((new_w, new_h), resample=PIL.Image.Resampling.LANCZOS)
|
55 |
+
|
56 |
+
return image
|
57 |
+
|
58 |
+
|
59 |
+
def generate_caption(self, image_path):
|
60 |
+
|
61 |
+
image = Image.open(image_path)
|
62 |
+
image = self.resize_image(image)
|
63 |
+
inputs = self.processor(image, self.prompt, return_tensors="pt").to("cuda", self.torch_dtype)
|
64 |
+
outputs = self.model.generate(**inputs, min_length=self.min_length, max_new_tokens=self.max_new_tokens)
|
65 |
+
caption = self.processor.decode(outputs[0], skip_special_tokens=self.skip_secial_tokens).strip()
|
66 |
+
|
67 |
+
return caption
|
68 |
+
|
69 |
+
def generate_captions_for_multiple_images(self, image_paths):
|
70 |
+
|
71 |
+
return [self.generate_caption(image_path) for image_path in image_paths]
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
pass
|