Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -92,29 +92,18 @@ def process_new_image(image_key, image, kbvqa):
|
|
92 |
def run_inference():
|
93 |
st.title("Run Inference")
|
94 |
|
95 |
-
method = st.selectbox(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Set default confidence based on the selected model
|
108 |
-
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
|
109 |
-
|
110 |
-
# Slider for confidence level
|
111 |
-
confidence_level = st.slider(
|
112 |
-
"Select minimum detection confidence level",
|
113 |
-
min_value=0.1,
|
114 |
-
max_value=0.9,
|
115 |
-
value=default_confidence,
|
116 |
-
step=0.1
|
117 |
-
)
|
118 |
|
119 |
|
120 |
|
@@ -140,8 +129,23 @@ def run_inference():
|
|
140 |
if st.session_state['kbvqa']:
|
141 |
image_qa_app(st.session_state['kbvqa'])
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
else:
|
144 |
st.write('Model is not ready for inference yet')
|
|
|
145 |
|
146 |
|
147 |
# Main function
|
|
|
92 |
def run_inference():
|
93 |
st.title("Run Inference")
|
94 |
|
95 |
+
method = st.selectbox("Choose a method:", ["Fine-Tuned Model", "In-Context Learning (n-shots)"], index=0)
|
96 |
+
detection_model = st.selectbox("Choose a model for object detection:", ["yolov5", "detic"], index=0)
|
97 |
+
confidence_level = st.slider("Select minimum detection confidence level", min_value=0.1, max_value=0.9, value=0.2 if detection_model == "yolov5" else 0.4, step=0.1)
|
98 |
+
|
99 |
+
# Check for changes in model or confidence level
|
100 |
+
model_changed = (st.session_state.get('detection_model') != detection_model)
|
101 |
+
confidence_changed = (st.session_state.get('confidence_level') != confidence_level)
|
102 |
+
|
103 |
+
if model_changed or confidence_changed:
|
104 |
+
st.session_state['detection_model'] = detection_model
|
105 |
+
st.session_state['confidence_level'] = confidence_level
|
106 |
+
st.warning("Detection model or confidence level changed. Please reload the model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
|
|
|
129 |
if st.session_state['kbvqa']:
|
130 |
image_qa_app(st.session_state['kbvqa'])
|
131 |
|
132 |
+
|
133 |
+
if st.button('Load Model'):
|
134 |
+
if st.session_state.get('kbvqa') and not model_changed and not confidence_changed:
|
135 |
+
st.write("Model already loaded.")
|
136 |
+
else:
|
137 |
+
st.text("Loading the model will take no more than a few minutes . .")
|
138 |
+
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
|
139 |
+
st.session_state['kbvqa'].detection_confidence = confidence_level
|
140 |
+
st.success("Model loaded with updated settings.")
|
141 |
+
|
142 |
+
if st.session_state.get('kbvqa'):
|
143 |
+
st.write("Model is ready for inference.")
|
144 |
+
image_qa_app(st.session_state['kbvqa'])
|
145 |
+
|
146 |
else:
|
147 |
st.write('Model is not ready for inference yet')
|
148 |
+
# here goes the code for n-shot learning
|
149 |
|
150 |
|
151 |
# Main function
|