Spaces:
Sleeping
Sleeping
madhurjindal
commited on
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.agents import tool
|
2 |
+
from typing import Literal
|
3 |
+
import json
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
|
7 |
+
from langgraph.graph import END, MessagesState
|
8 |
+
|
9 |
+
from render_mermaid import render_mermaid
|
10 |
+
from langchain_community.document_loaders import GithubFileLoader
|
11 |
+
|
12 |
+
# from langchain_ollama import ChatOllama
|
13 |
+
from prompts import *
|
14 |
+
from constants import file_extensions
|
15 |
+
from __init__ import llm, llm_structured
|
16 |
+
|
17 |
+
|
18 |
+
class GraphState(MessagesState):
|
19 |
+
working_knowledge: str
|
20 |
+
all_files: list[str]
|
21 |
+
remaining_files: list[str]
|
22 |
+
explored_files: list[str]
|
23 |
+
explored_summaries: str
|
24 |
+
document_summaries_store: dict
|
25 |
+
documents: list
|
26 |
+
final_graph: Image
|
27 |
+
|
28 |
+
|
29 |
+
def load_github_codebase(repo: str, branch: str):
|
30 |
+
loader = GithubFileLoader(
|
31 |
+
repo=repo, # the repo name
|
32 |
+
branch=branch, # the branch name
|
33 |
+
github_api_url="https://api.github.com",
|
34 |
+
file_filter=lambda file_path: file_path.endswith(tuple(file_extensions)),
|
35 |
+
# file_filter=lambda filepath: True,
|
36 |
+
encoding="utf-8",
|
37 |
+
)
|
38 |
+
documents = loader.load()
|
39 |
+
return documents
|
40 |
+
|
41 |
+
|
42 |
+
def get_file_content_summary(file_path: str, state: GraphState):
|
43 |
+
"""Returns the functional summary of a file. Please note that the file_path should not be null.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
file_path: The path of the file for which the summary is required."""
|
47 |
+
|
48 |
+
summary = check_summary_in_store(file_path, state)
|
49 |
+
if summary:
|
50 |
+
return summary
|
51 |
+
for document in state["documents"]:
|
52 |
+
if document.metadata["path"] == file_path:
|
53 |
+
doc_content = document.page_content
|
54 |
+
break
|
55 |
+
# print(content)
|
56 |
+
summary = llm.invoke(
|
57 |
+
[SystemMessage(content=summarizer_prompt), HumanMessage(content=doc_content)]
|
58 |
+
).content
|
59 |
+
summary = json.dumps({"FilePath": file_path, "Summary": summary})
|
60 |
+
save_summary_in_store(file_path, summary, state)
|
61 |
+
return summary
|
62 |
+
|
63 |
+
|
64 |
+
def explore_file(state: GraphState):
|
65 |
+
file_path = state["remaining_files"].pop()
|
66 |
+
|
67 |
+
summary_dict = json.loads(get_file_content_summary(file_path, state))
|
68 |
+
if summary_dict["FilePath"] in state["explored_files"]:
|
69 |
+
return state
|
70 |
+
knowledge_str = f"""* File Path: {summary_dict['FilePath']}\n\tSummary: {summary_dict['Summary']}\n\n"""
|
71 |
+
state["explored_summaries"] += knowledge_str
|
72 |
+
state["explored_files"].append(file_path)
|
73 |
+
return state
|
74 |
+
|
75 |
+
|
76 |
+
@tool
|
77 |
+
def generate_final_mermaid_code():
|
78 |
+
"""Generate the final mermaid code for the codebase once all the files are explored and the working knowledge is complete."""
|
79 |
+
return "generate_mermaid_code"
|
80 |
+
|
81 |
+
|
82 |
+
def check_summary_in_store(file_path: str, state: GraphState):
|
83 |
+
if file_path in state["document_summaries_store"]:
|
84 |
+
return state["document_summaries_store"][file_path]
|
85 |
+
return None
|
86 |
+
|
87 |
+
|
88 |
+
def save_summary_in_store(file_path: str, summary: str, state: GraphState):
|
89 |
+
state["document_summaries_store"][file_path] = summary
|
90 |
+
|
91 |
+
|
92 |
+
def get_all_filesnames_in_codebase(state: GraphState):
|
93 |
+
"""Get a list of all files (as filepaths) in the codebase."""
|
94 |
+
filenames = []
|
95 |
+
for document in state["documents"]:
|
96 |
+
filenames.append(document.metadata["path"])
|
97 |
+
|
98 |
+
return {
|
99 |
+
"all_files": filenames,
|
100 |
+
"explored_files": [],
|
101 |
+
"remaining_files": filenames,
|
102 |
+
"explored_summaries": "",
|
103 |
+
"document_summaries_store": {},
|
104 |
+
}
|
105 |
+
|
106 |
+
|
107 |
+
def parse_plan(state: GraphState):
|
108 |
+
"""Parse the plan and return the next action."""
|
109 |
+
if "File Exploration Plan" in state["working_knowledge"]:
|
110 |
+
plan_working = state["working_knowledge"].split("File Exploration Plan")[1]
|
111 |
+
else:
|
112 |
+
plan_working = state["working_knowledge"]
|
113 |
+
response = llm_structured.invoke(plan_parser.format(plan_list=plan_working))[
|
114 |
+
"plan_list"
|
115 |
+
]
|
116 |
+
if len(response) > 25:
|
117 |
+
response = response[:25]
|
118 |
+
# response = eval(llm.invoke(plan_parser.format(plan_list=plan_working)).content)
|
119 |
+
return {"remaining_files": response}
|
120 |
+
|
121 |
+
|
122 |
+
def router(state: GraphState):
|
123 |
+
"""Route the conversation to the appropriate node based on the current state of the conversation."""
|
124 |
+
if state["remaining_files"] != []:
|
125 |
+
return "explore_file"
|
126 |
+
else:
|
127 |
+
return "generate_mermaid_code"
|
128 |
+
|
129 |
+
|
130 |
+
def get_plan_for_codebase(state: GraphState):
|
131 |
+
new_state = get_all_filesnames_in_codebase(state)
|
132 |
+
planner_content = "# File Structure\n" + str(new_state["all_files"])
|
133 |
+
plan = llm.invoke(
|
134 |
+
[SystemMessage(content=planner_prompt), HumanMessage(content=planner_content)]
|
135 |
+
)
|
136 |
+
|
137 |
+
knowledge_str = f"""# Plan\n{plan.content}"""
|
138 |
+
new_state["working_knowledge"] = knowledge_str
|
139 |
+
# print(new_state)
|
140 |
+
return new_state
|
141 |
+
|
142 |
+
|
143 |
+
def final_mermaid_code_generation(state: GraphState):
|
144 |
+
final_graph_content = (
|
145 |
+
"# Disjoint Codebase Understanding\n"
|
146 |
+
+ state["working_knowledge"]
|
147 |
+
+ "\n\n# Completed Explorations\n"
|
148 |
+
+ state["explored_summaries"]
|
149 |
+
)
|
150 |
+
response = llm.invoke(
|
151 |
+
[
|
152 |
+
SystemMessage(content=final_graph_prompt),
|
153 |
+
HumanMessage(content=final_graph_content),
|
154 |
+
]
|
155 |
+
)
|
156 |
+
return {"messages": [response]}
|
157 |
+
|
158 |
+
|
159 |
+
import time
|
160 |
+
|
161 |
+
|
162 |
+
def extract_mermaid_and_generate_graph(state: GraphState):
|
163 |
+
mermaid_code = state["messages"][-1].content
|
164 |
+
if "mermaid" in mermaid_code:
|
165 |
+
mermaid_code = mermaid_code.split("mermaid")[-1]
|
166 |
+
response = llm.invoke(
|
167 |
+
[SystemMessage(content=mermaid_extracter), HumanMessage(content=mermaid_code)]
|
168 |
+
).content
|
169 |
+
response = response.split("```mermaid")[-1].split("```")[0]
|
170 |
+
# Save the mermaid code in a file with the current timestamp
|
171 |
+
# print(response)
|
172 |
+
file_name = f"mermaid/{int(time.time())}.png"
|
173 |
+
render_mermaid(response, file_name)
|
174 |
+
|
175 |
+
# Read image to return as output
|
176 |
+
img = Image.open(file_name)
|
177 |
+
return {"messages": [AIMessage(response)], "final_graph": img}
|
178 |
+
|
179 |
+
|
180 |
+
def need_to_update_working_knowledge(state: GraphState):
|
181 |
+
messages = state["messages"]
|
182 |
+
last_message = messages[-1]
|
183 |
+
# prev_to_last_message = messages[-2]
|
184 |
+
# If the last call is a tool message, we need to update the working knowledge
|
185 |
+
if last_message.content == "generate_mermaid_code":
|
186 |
+
return "generate_mermaid_code"
|
187 |
+
if isinstance(last_message, ToolMessage):
|
188 |
+
return "tools_knowledge_update"
|
189 |
+
# Otherwise, we continue with the agent
|
190 |
+
return "agent"
|