mageec commited on
Commit
a89489e
·
verified ·
1 Parent(s): e318f1f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -83
app.py DELETED
@@ -1,83 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
-
4
- from transformers import WhisperForConditionalGeneration, WhisperProcessor
5
- from transformers.models.whisper.tokenization_whisper import LANGUAGES
6
- from transformers.pipelines.audio_utils import ffmpeg_read
7
-
8
- import gradio as gr
9
-
10
-
11
- model_id = "mageec/whisper-tiny-hi-capstone"
12
-
13
- device = "cuda" if torch.cuda.is_available() else "cpu"
14
-
15
- processor = WhisperProcessor.from_pretrained(model_id)
16
- model = WhisperForConditionalGeneration.from_pretrained(model_id)
17
- model.eval()
18
- model.to(device)
19
-
20
- sampling_rate = processor.feature_extractor.sampling_rate
21
-
22
- bos_token_id = processor.tokenizer.all_special_ids[-106]
23
- decoder_input_ids = torch.tensor([1,bos_token_id]).to(device)
24
-
25
-
26
- def process_audio_file(file):
27
- with open(file, "rb") as f:
28
- inputs = f.read()
29
-
30
- audio = ffmpeg_read(inputs, sampling_rate)
31
- return audio
32
-
33
-
34
- def transcribe(Microphone, File_Upload):
35
- warn_output = ""
36
- if (Microphone is not None) and (File_Upload is not None):
37
- warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
38
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
39
- file = Microphone
40
-
41
- elif (Microphone is None) and (File_Upload is None):
42
- return "ERROR: You have to either use the microphone or upload an audio file"
43
-
44
- elif Microphone is not None:
45
- file = Microphone
46
- else:
47
- file = File_Upload
48
-
49
- audio_data = process_audio_file(file)
50
-
51
- input_features = processor(audio_data, return_tensors="pt").input_features
52
-
53
- with torch.no_grad():
54
- logits = model.forward(input_features.to(device), decoder_input_ids=decoder_input_ids).logits
55
-
56
- pred_ids = torch.argmax(logits, dim=-1)
57
- probability = F.softmax(logits, dim=-1).max()
58
-
59
- lang_ids = processor.decode(pred_ids[0])
60
-
61
- lang_ids = lang_ids.lstrip("<|").rstrip("|>")
62
- language = LANGUAGES.get(lang_ids, "not detected")
63
-
64
- return language.capitalize(), probability.cpu().numpy()
65
-
66
-
67
- iface = gr.Interface(
68
- fn=transcribe,
69
- inputs=[
70
- gr.inputs.Audio(source="microphone", type='filepath', optional=True),
71
- gr.inputs.Audio(source="upload", type='filepath', optional=True),
72
- ],
73
- outputs=[
74
- gr.outputs.Textbox(label="Language"),
75
- gr.Number(label="Probability"),
76
- ],
77
- layout="horizontal",
78
- theme="huggingface",
79
- title="Whisper Language Identification",
80
- description="Demo for Language Identification using OpenAI's [Whisper Large V2](https://huggingface.co/openai/whisper-large-v2).",
81
- allow_flagging='never',
82
- )
83
- iface.launch(enable_queue=True)