Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
|
4 |
-
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
5 |
-
from transformers.models.whisper.tokenization_whisper import LANGUAGES
|
6 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
7 |
-
|
8 |
-
import gradio as gr
|
9 |
-
|
10 |
-
|
11 |
-
model_id = "mageec/whisper-tiny-hi-capstone"
|
12 |
-
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
|
15 |
-
processor = WhisperProcessor.from_pretrained(model_id)
|
16 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
17 |
-
model.eval()
|
18 |
-
model.to(device)
|
19 |
-
|
20 |
-
sampling_rate = processor.feature_extractor.sampling_rate
|
21 |
-
|
22 |
-
bos_token_id = processor.tokenizer.all_special_ids[-106]
|
23 |
-
decoder_input_ids = torch.tensor([1,bos_token_id]).to(device)
|
24 |
-
|
25 |
-
|
26 |
-
def process_audio_file(file):
|
27 |
-
with open(file, "rb") as f:
|
28 |
-
inputs = f.read()
|
29 |
-
|
30 |
-
audio = ffmpeg_read(inputs, sampling_rate)
|
31 |
-
return audio
|
32 |
-
|
33 |
-
|
34 |
-
def transcribe(Microphone, File_Upload):
|
35 |
-
warn_output = ""
|
36 |
-
if (Microphone is not None) and (File_Upload is not None):
|
37 |
-
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
|
38 |
-
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
39 |
-
file = Microphone
|
40 |
-
|
41 |
-
elif (Microphone is None) and (File_Upload is None):
|
42 |
-
return "ERROR: You have to either use the microphone or upload an audio file"
|
43 |
-
|
44 |
-
elif Microphone is not None:
|
45 |
-
file = Microphone
|
46 |
-
else:
|
47 |
-
file = File_Upload
|
48 |
-
|
49 |
-
audio_data = process_audio_file(file)
|
50 |
-
|
51 |
-
input_features = processor(audio_data, return_tensors="pt").input_features
|
52 |
-
|
53 |
-
with torch.no_grad():
|
54 |
-
logits = model.forward(input_features.to(device), decoder_input_ids=decoder_input_ids).logits
|
55 |
-
|
56 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
57 |
-
probability = F.softmax(logits, dim=-1).max()
|
58 |
-
|
59 |
-
lang_ids = processor.decode(pred_ids[0])
|
60 |
-
|
61 |
-
lang_ids = lang_ids.lstrip("<|").rstrip("|>")
|
62 |
-
language = LANGUAGES.get(lang_ids, "not detected")
|
63 |
-
|
64 |
-
return language.capitalize(), probability.cpu().numpy()
|
65 |
-
|
66 |
-
|
67 |
-
iface = gr.Interface(
|
68 |
-
fn=transcribe,
|
69 |
-
inputs=[
|
70 |
-
gr.inputs.Audio(source="microphone", type='filepath', optional=True),
|
71 |
-
gr.inputs.Audio(source="upload", type='filepath', optional=True),
|
72 |
-
],
|
73 |
-
outputs=[
|
74 |
-
gr.outputs.Textbox(label="Language"),
|
75 |
-
gr.Number(label="Probability"),
|
76 |
-
],
|
77 |
-
layout="horizontal",
|
78 |
-
theme="huggingface",
|
79 |
-
title="Whisper Language Identification",
|
80 |
-
description="Demo for Language Identification using OpenAI's [Whisper Large V2](https://huggingface.co/openai/whisper-large-v2).",
|
81 |
-
allow_flagging='never',
|
82 |
-
)
|
83 |
-
iface.launch(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|