mahimairaja's picture
Update app.py
cbc9675
raw
history blame
3.3 kB
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, TFMarianMTModel
from typing import List
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoProcessor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
processor = AutoProcessor.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_french")
model = SpeechT5ForTextToSpeech.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_french").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
src = "en" # source language
trg = "fr" # target language
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
model_tranlator = TFMarianMTModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
english = outputs["text"]
batch = tokenizer([english], return_tensors="tf")
gen = model_tranlator.generate(**batch)
return tokenizer.batch_decode(gen, skip_special_tokens=True)[0]
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
# examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()