File size: 5,041 Bytes
a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 8b96174 a725a50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
from datasets import load_dataset
import pandas as pd
import sys
import subprocess
from datetime import datetime
from huggingface_hub import HfApi
def get_newest_file(repo_id, prefix):
"""Get the newest file with given prefix from HuggingFace repo"""
api = HfApi()
files = api.list_repo_files(repo_id, repo_type="dataset")
relevant_files = [f for f in files if f.startswith(prefix)]
if not relevant_files:
return None
file_dates = []
for filename in relevant_files:
try:
date_str = filename.split('_')[-1].split('.')[0]
date = datetime.strptime(date_str, '%Y%m%d')
file_dates.append((date, filename))
except (IndexError, ValueError):
continue
if not file_dates:
return None
newest_file = sorted(file_dates, key=lambda x: x[0], reverse=True)[0][1]
return newest_file
def load_data(repo_id, file_path):
"""Load data from HuggingFace and return as DataFrame"""
try:
dataset = load_dataset(repo_id, data_files={'train': file_path}, split='train')
df = pd.DataFrame(dataset)
return df.head(3)
except Exception as e:
return pd.DataFrame({'Error': [str(e)]})
def praw_new_data():
"""Execute praw.py and show the latest data"""
try:
# Execute praw.py
subprocess.run([sys.executable, "praw.py"], check=True)
success_message = "β
Successfully crawled new data!"
except Exception as e:
success_message = f"β Error executing praw.py: {str(e)}"
# Load and return latest data
repo_id = "Vera-ZWY/reddite2024elections_submissions"
newest_file = get_newest_file(repo_id, "submissions/df_")
if newest_file:
df = load_data(repo_id, newest_file)
return success_message, df, load_merged_data()[1] # Return current merged data state
else:
return "No crawled data files found", pd.DataFrame(), load_merged_data()[1]
def merge_data():
"""Execute merge.py and show the latest merged data"""
try:
# Execute merge.py
subprocess.run([sys.executable, "merge.py"], check=True)
success_message = "β
Successfully merged data!"
except Exception as e:
success_message = f"β Error executing merge.py: {str(e)}"
# Load and return latest merged data
merged_df = load_merged_data()[1]
crawled_df = load_crawled_data()[1]
return success_message, crawled_df, merged_df
def load_crawled_data():
"""Load latest crawled data"""
repo_id = "Vera-ZWY/reddite2024elections_submissions"
newest_file = get_newest_file(repo_id, "submissions/df_24")
if newest_file:
return f"Latest crawled data ({newest_file}):", load_data(repo_id, newest_file)
return "No crawled data available", pd.DataFrame()
def load_merged_data():
"""Load latest merged data"""
repo_id = "Vera-ZWY/reddite2024elections_submissions"
newest_merged = "submission/merged_reddit_data.csv"
if newest_merged:
return f"Latest merged data ({newest_merged}):", load_data(repo_id, newest_merged)
return "No merged data available", pd.DataFrame()
# Create Gradio interface
with gr.Blocks(title="Reddit Data Processing") as iface:
gr.Markdown("# Reddit Data Processing Interface")
# Status message for operations
status_text = gr.Textbox(label="Status", interactive=False)
with gr.Row():
with gr.Column():
praw_button = gr.Button("Crawl New Data", variant="primary")
with gr.Column():
merge_button = gr.Button("Merge Data", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Latest Crawled Data (Top 3 Rows)")
crawled_table = gr.Dataframe(
headers=["title", "score", "id", "url", "comms_num", "created", "body", "subreddit"],
value=load_crawled_data()[1],
wrap=True
)
with gr.Row():
with gr.Column():
gr.Markdown("### Latest Merged Data (Top 3 Rows)")
merged_table = gr.Dataframe(
headers=["title", "score", "id", "url", "num_comments", "created", "body", "content", "subreddit"],
value=load_merged_data()[1],
wrap=True
)
# Button click handlers
praw_button.click(
fn=praw_new_data,
outputs=[status_text, crawled_table, merged_table]
)
merge_button.click(
fn=merge_data,
outputs=[status_text, crawled_table, merged_table]
)
gr.Markdown("""
## The full dataset storage at https://huggingface.co/datasets/Vera-ZWY/reddite2024elections_submissions/
### Instructions:
1. Click 'Crawl New Data' to fetch new Reddit data
2. Click 'Merge Data' to merge the latest datasets
3. Tables will automatically update to show the latest data
""")
# Launch the interface
if __name__ == "__main__":
iface.launch() |