Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,55 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from src.model import DRModel
|
4 |
-
from torchvision import transforms as T
|
5 |
-
|
6 |
-
CHECKPOINT_PATH = "
|
7 |
-
model = DRModel.load_from_checkpoint(CHECKPOINT_PATH, map_location="cpu")
|
8 |
-
model.eval()
|
9 |
-
|
10 |
-
labels = {
|
11 |
-
0: "No DR",
|
12 |
-
1: "Mild",
|
13 |
-
2: "Moderate",
|
14 |
-
3: "Severe",
|
15 |
-
4: "Proliferative DR",
|
16 |
-
}
|
17 |
-
|
18 |
-
transform = T.Compose(
|
19 |
-
[
|
20 |
-
T.Resize((224, 224)),
|
21 |
-
T.ToTensor(),
|
22 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
23 |
-
]
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
# Define the prediction function
|
28 |
-
def predict(input_img):
|
29 |
-
input_img = transform(input_img).unsqueeze(0)
|
30 |
-
with torch.no_grad():
|
31 |
-
prediction = torch.nn.functional.softmax(model(input_img)[0], dim=0)
|
32 |
-
confidences = {labels[i]: float(prediction[i]) for i in labels}
|
33 |
-
return confidences
|
34 |
-
|
35 |
-
|
36 |
-
# Set up the Gradio app interface
|
37 |
-
dr_app = gr.Interface(
|
38 |
-
fn=predict,
|
39 |
-
inputs=gr.Image(type="pil"),
|
40 |
-
outputs=gr.Label(),
|
41 |
-
title="Diabetic Retinopathy Detection App",
|
42 |
-
description="Welcome to our Diabetic Retinopathy Detection App! \
|
43 |
-
This app utilizes deep learning models to detect diabetic retinopathy in retinal images.\
|
44 |
-
Diabetic retinopathy is a common complication of diabetes and early detection is crucial for effective treatment.",
|
45 |
-
examples=[
|
46 |
-
"data/sample/10_left.jpeg",
|
47 |
-
"data/sample/10_right.jpeg",
|
48 |
-
"data/sample/15_left.jpeg",
|
49 |
-
"data/sample/16_right.jpeg",
|
50 |
-
],
|
51 |
-
)
|
52 |
-
|
53 |
-
# Run the Gradio app
|
54 |
-
if __name__ == "__main__":
|
55 |
-
dr_app.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from src.model import DRModel
|
4 |
+
from torchvision import transforms as T
|
5 |
+
|
6 |
+
CHECKPOINT_PATH = "dr-model.ckpt"
|
7 |
+
model = DRModel.load_from_checkpoint(CHECKPOINT_PATH, map_location="cpu")
|
8 |
+
model.eval()
|
9 |
+
|
10 |
+
labels = {
|
11 |
+
0: "No DR",
|
12 |
+
1: "Mild",
|
13 |
+
2: "Moderate",
|
14 |
+
3: "Severe",
|
15 |
+
4: "Proliferative DR",
|
16 |
+
}
|
17 |
+
|
18 |
+
transform = T.Compose(
|
19 |
+
[
|
20 |
+
T.Resize((224, 224)),
|
21 |
+
T.ToTensor(),
|
22 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
23 |
+
]
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
# Define the prediction function
|
28 |
+
def predict(input_img):
|
29 |
+
input_img = transform(input_img).unsqueeze(0)
|
30 |
+
with torch.no_grad():
|
31 |
+
prediction = torch.nn.functional.softmax(model(input_img)[0], dim=0)
|
32 |
+
confidences = {labels[i]: float(prediction[i]) for i in labels}
|
33 |
+
return confidences
|
34 |
+
|
35 |
+
|
36 |
+
# Set up the Gradio app interface
|
37 |
+
dr_app = gr.Interface(
|
38 |
+
fn=predict,
|
39 |
+
inputs=gr.Image(type="pil"),
|
40 |
+
outputs=gr.Label(),
|
41 |
+
title="Diabetic Retinopathy Detection App",
|
42 |
+
description="Welcome to our Diabetic Retinopathy Detection App! \
|
43 |
+
This app utilizes deep learning models to detect diabetic retinopathy in retinal images.\
|
44 |
+
Diabetic retinopathy is a common complication of diabetes and early detection is crucial for effective treatment.",
|
45 |
+
examples=[
|
46 |
+
"data/sample/10_left.jpeg",
|
47 |
+
"data/sample/10_right.jpeg",
|
48 |
+
"data/sample/15_left.jpeg",
|
49 |
+
"data/sample/16_right.jpeg",
|
50 |
+
],
|
51 |
+
)
|
52 |
+
|
53 |
+
# Run the Gradio app
|
54 |
+
if __name__ == "__main__":
|
55 |
+
dr_app.launch()
|