Health_Vision / app.py
kumar989's picture
Update app.py
2042ead
raw
history blame
1.77 kB
import io
import os
import numpy as np
import streamlit as st
import requests
from PIL import Image
from model import classify
import cv2
@st.cache(allow_output_mutation=True)
# def get_model():
# return bone_frac()
# pred_model = get_model()
# pred_model=bone_frac()
def predict():
c=classify('tmp.jpg')
st.markdown('#### Predicted Captions:')
st.write(c)
st.title('Health Vision')
st.markdown('### What we can do?')
st.write('-Detect Brain tumors')
st.write('-Detect Pnuemonia')
st.write('-Detect Bone Fractures')
st.write('-Detect Skin infections')
st.write('-Detect Kidney Stones')
st.write('-Detect Eye infections')
st.write('')
st.write('(Note:The results may not be correct always its better to have a second opnion)')
# img_url = st.text_input(label='Enter Image URL')
# if (img_url != "") and (img_url != None):
# img = Image.open(requests.get(img_url, stream=True).raw)
# img = img.convert('RGB')
# st.image(img)
# img.save('tmp.jpg')
# predict()
# os.remove('tmp.jpg')
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True)
img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg'])
if img_upload != None:
img = img_upload.read()
img = Image.open(io.BytesIO(img))
img = img.convert('RGB')
img=np.asarray(img)
print(img)
# img=cv2.imread(img)
# img.save('tmp.jpg')
st.image(img)
c=classify(img)
st.markdown('#### Predicted Captions:')
st.write(c)
# predict()
# os.remove('tmp.jpg')