kumar989 NVASAIKUMAR commited on
Commit
25515ea
·
0 Parent(s):

Duplicate from NVASAIKUMAR/ModelD

Browse files

Co-authored-by: VENKATA ANAND SAI KUMAR NARLA <[email protected]>

Files changed (15) hide show
  1. .gitattributes +34 -0
  2. README.md +13 -0
  3. all-in-one.h5 +3 -0
  4. app.py +56 -0
  5. brain.h5 +3 -0
  6. chest.h5 +3 -0
  7. covid_pred.sav +0 -0
  8. diab_pred.sav +0 -0
  9. eye .h5 +3 -0
  10. fracture.h5 +3 -0
  11. heartatt_pred.sav +0 -0
  12. kidney.h5 +3 -0
  13. model.py +81 -0
  14. requirements.txt +8 -0
  15. skin.h5 +3 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ModelD
3
+ emoji: 👁
4
+ colorFrom: yellow
5
+ colorTo: gray
6
+ sdk: streamlit
7
+ sdk_version: 1.19.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: NVASAIKUMAR/ModelD
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
all-in-one.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bbf56489ced275993d802e266ce51dd26b954e79ac45c9472da58fead91d293
3
+ size 18905360
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import numpy as np
4
+ import streamlit as st
5
+ import requests
6
+ from PIL import Image
7
+ from model import classify
8
+ import cv2
9
+
10
+ @st.cache(allow_output_mutation=True)
11
+ # def get_model():
12
+ # return bone_frac()
13
+
14
+ # pred_model = get_model()
15
+ # pred_model=bone_frac()
16
+
17
+ def predict():
18
+ c=classify('tmp.jpg')
19
+ st.markdown('#### Predicted Captions:')
20
+ st.write(c)
21
+
22
+ st.title('Image Captioner')
23
+ img_url = st.text_input(label='Enter Image URL')
24
+
25
+ if (img_url != "") and (img_url != None):
26
+ img = Image.open(requests.get(img_url, stream=True).raw)
27
+ img = img.convert('RGB')
28
+ st.image(img)
29
+ img.save('tmp.jpg')
30
+ predict()
31
+ os.remove('tmp.jpg')
32
+
33
+ hide_streamlit_style = """
34
+ <style>
35
+ #MainMenu {visibility: hidden;}
36
+ footer {visibility: hidden;}
37
+ </style>
38
+ """
39
+ st.markdown(hide_streamlit_style, unsafe_allow_html=True)
40
+ # st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True)
41
+ img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg'])
42
+
43
+ if img_upload != None:
44
+ img = img_upload.read()
45
+ img = Image.open(io.BytesIO(img))
46
+ img = img.convert('RGB')
47
+ img=np.asarray(img)
48
+ print(img)
49
+ # img=cv2.imread(img)
50
+ # img.save('tmp.jpg')
51
+ st.image(img)
52
+ c=classify(img)
53
+ st.markdown('#### Predicted Captions:')
54
+ st.write(c)
55
+ # predict()
56
+ # os.remove('tmp.jpg')
brain.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44ed5812c6454304fb43a6870cba8f21996195825e15399baabe3c175e6db8ef
3
+ size 18905360
chest.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3615404f9a0d2221c53f706bf39c0d4a72187b51fa4a88508e7d24ea883cdcec
3
+ size 18905408
covid_pred.sav ADDED
Binary file (12 kB). View file
 
diab_pred.sav ADDED
Binary file (60.5 kB). View file
 
eye .h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f28ef2cecfc306c57073e822ee5ead4679eeb626023e1964495ddcbb76d7a42
3
+ size 18905320
fracture.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2be347c748e7d70039a3286a11047c502a9db9a4fca6ad7d67bacd32048fbbfe
3
+ size 18905296
heartatt_pred.sav ADDED
Binary file (119 kB). View file
 
kidney.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2595174821c906b783bfbfb853d50cc2f81dc293863017de8457655195dcd4c
3
+ size 18905296
model.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import cv2
3
+ import numpy as np
4
+
5
+
6
+ def classify(img):
7
+ im = img
8
+ lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
9
+ im = cv2.resize(im,(52,52))
10
+ model = tf.keras.models.load_model("all-in-one.h5",compile=False)
11
+ result = model.predict(np.array([im]))
12
+ a = np.argmax(result)
13
+ c=""
14
+ if a==0:
15
+ return "Enter the medical Image"
16
+ if a==1:
17
+ c = bone_net(im)
18
+ if a==2:
19
+ c = brain_net(im)
20
+ if a==3:
21
+ c = Eye_net(im)
22
+ if a==4:
23
+ c = kidney_net(im)
24
+ if a==5:
25
+ c = chest_net(im)
26
+ if a==6:
27
+ c = skin_net(im)
28
+ return c
29
+
30
+
31
+
32
+ def bone_net(img):
33
+ # img = cv2.resize(img,(224,224))
34
+ model = tf.keras.models.load_model("fracture.h5",compile=False)
35
+ result = model.predict(np.array([img]))
36
+ op=""
37
+ if result[0]<0.5:
38
+ op="Fracture"
39
+ else:
40
+ op="Normal"
41
+ return op
42
+
43
+ def brain_net(img):
44
+ lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
45
+ # img = cv2.resize(img,(52,52))
46
+ model = tf.keras.models.load_model("brain.h5",compile=False)
47
+ result = model.predict(np.array([img]))
48
+ ans = np.argmax(result)
49
+ return lt[ans]
50
+
51
+ def chest_net(img):
52
+ lt = ['PNEUMONIA', 'NORMAL']
53
+ # img = cv2.resize(img,(224,224))
54
+ model = tf.keras.models.load_model("chest.h5",compile=False)
55
+ result = model.predict(np.array([img]))
56
+ ans = np.argmax(result)
57
+ return lt[ans]
58
+
59
+ def Eye_net(img):
60
+ lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
61
+ # img = cv2.resize(img,(224,224))
62
+ model = tf.keras.models.load_model("eye.h5",compile=False)
63
+ result = model.predict(np.array([img]))
64
+ ans = np.argmax(result)
65
+ return lt[ans]
66
+
67
+ def kidney_net(img):
68
+ lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
69
+ # img = cv2.resize(img,(224,224))
70
+ model = tf.keras.models.load_model("kidney.h5",compile=False)
71
+ result = model.predict(np.array([img]))
72
+ ans = np.argmax(result)
73
+ return lt[ans]
74
+
75
+ def skin_net(img):
76
+ lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
77
+ # img = cv2.resize(img,(224,224))
78
+ model = tf.keras.models.load_model("skin.h5",compile=False)
79
+ result = model.predict(np.array([img]))
80
+ ans = np.argmax(result)
81
+ return lt[ans]
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ numpy==1.22.3
2
+ pandas==1.4.3
3
+ pandas_stubs==1.2.0.56
4
+ Pillow==9.2.0
5
+ requests==2.27.1
6
+ streamlit==1.11.1
7
+ tensorflow==2.9.1
8
+ opencv-python
skin.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd1cc593dfe9f2d76723ae397f3145737cb60ab3b2df8e42dd8a07686983c444
3
+ size 18905296