Spaces:
Running
Running
File size: 5,491 Bytes
ca64dfe 988c5f2 55bd66e 988c5f2 7321565 d30c02a 26b862a 7321565 5eddda9 988c5f2 7321565 988c5f2 55bd66e 837e37f 60848d1 837e37f 7321565 988c5f2 7321565 988c5f2 7321565 988c5f2 ca64dfe cbe2d25 ca64dfe cbe2d25 ca64dfe cbe2d25 ca64dfe 7321565 cbe2d25 988c5f2 837e37f 7321565 ca64dfe 26b862a d30c02a 7bf6ee2 60848d1 cbe2d25 7321565 882d9bb cbe2d25 882d9bb 23a54f8 cbe2d25 7bf6ee2 cbe2d25 d30c02a 7bf6ee2 837e37f 2b2ec83 d6a5c7c 2b2ec83 60848d1 837e37f d6a5c7c 23a54f8 d6a5c7c 837e37f d6a5c7c 23a54f8 837e37f 23a54f8 837e37f a3542d4 837e37f d30c02a 837e37f d30c02a 988c5f2 d30c02a 837e37f 96d766a e294c88 837e37f 60848d1 bf76813 60848d1 837e37f 60848d1 837e37f 60848d1 bf76813 60848d1 837e37f 988c5f2 d6a5c7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import spaces
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
DEFAULT_SYSTEM_PROMPT = """
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
If the information is not in the context, respond with "I don't find that information in the available documentation."
Keep responses to 1-2 lines maximum.
""".strip()
PREDEFINED_QUESTIONS = [
"Select a question...",
"Tell me how can I navigate to a specific pose - include replanning aspects in your answer.",
"Can you provide me with code for this task?",
"How do I set up obstacle avoidance in ROS2 navigation?",
"What are the key parameters for tuning the nav2 planner?",
"How do I integrate custom recovery behaviors?"
]
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
Context: {context}
Question: {question}
Answer: [/INST]
""".strip()
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
device_map="cuda" if torch.cuda.is_available() else "cpu"
)
return model, tokenizer
def question_selected(question):
if question == "Select a question...":
return ""
return question
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
history = history or []
if not message.strip():
history.append((message, "Please enter a question or select one from the dropdown menu."))
return history
model, tokenizer = initialize_model()
retriever = db.as_retriever(search_kwargs={"k": 2})
docs = retriever.get_relevant_documents(message)
context = "\n".join([doc.page_content for doc in docs])
prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15
)
output = text_pipeline(
prompt,
return_full_text=False,
max_new_tokens=max_tokens
)[0]['generated_text']
history.append((message, output.strip()))
return history
except Exception as e:
history.append((message, f"An error occurred: {str(e)}"))
return history
def submit_and_clear(message, history, system_message, max_tokens, temperature, top_p):
new_history = respond(message, history, system_message, max_tokens, temperature, top_p)
return new_history, ""
with gr.Blocks(title="ROS2 Expert Assistant") as demo:
gr.Markdown("# ROS2 Expert Assistant")
gr.Markdown("Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.")
question_dropdown = gr.Dropdown(
choices=PREDEFINED_QUESTIONS,
value="Select a question...",
label="Pre-defined Questions"
)
chatbot = gr.Chatbot()
msg = gr.Textbox(
label="Your Question",
placeholder="Type your question here or select one from the dropdown above...",
lines=2
)
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear")
with gr.Accordion("Advanced Settings", open=False):
# system_message = gr.Textbox(
# value=DEFAULT_SYSTEM_PROMPT,
# label="System Message",
# lines=3
# )
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
question_dropdown.change(
question_selected,
inputs=[question_dropdown],
outputs=[msg]
)
submit.click(
submit_and_clear,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg]
)
clear.click(lambda: (None, ""), None, [chatbot, msg], queue=False)
msg.submit(
submit_and_clear,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg]
)
if __name__ == "__main__":
demo.launch() |