pdf_qa / app.py
mariagrandury's picture
move comments in create collection name function
7e34cb9
raw
history blame
15.5 kB
import os
import re
from pathlib import Path
import chromadb
import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import Chroma
from unidecode import unidecode
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.1",
"google/gemma-7b-it",
"google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta",
"tiiuae/falcon-7b-instruct",
"google/flan-t5-xxl",
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap):
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_vector_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
def initialize_llmchain(
llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
):
progress(0.1, desc="Initializing HF Hub...")
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
load_in_8bit=True,
)
else:
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.6, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history", output_key="answer", return_messages=True
)
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
retriever = vector_db.as_retriever()
progress(0.75, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
# Generate collection name for vector database
# - Use filepath as input, ensuring unicode text
def create_collection_name(filepath):
collection_name = Path(filepath).stem # Extract filename without extension
# Fix potential issues from naming convention
collection_name = collection_name.replace(" ", "-") # Remove space
collection_name = unidecode(
collection_name
) # ASCII transliterations of Unicode text
collection_name = re.sub(
"[^A-Za-z0-9]+", "-", collection_name
) # Remove special characters
collection_name = collection_name[:50] # Limit length to 50 characters
# Minimum length of 3 characters
if len(collection_name) < 3:
collection_name = collection_name + "xyz"
# Enforce start and end as alphanumeric character
if not collection_name[0].isalnum():
collection_name = "A" + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + "Z"
print("Filepath: ", filepath)
print("Collection name: ", collection_name)
return collection_name
def initialize_database(
list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()
):
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, desc="Creating collection name...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Loading document...")
doc_splits = load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_vector_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Complete!"
def initialize_LLM(
llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
):
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(
llm_name, llm_temperature, max_tokens, top_k, vector_db, progress
)
return qa_chain, "Complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
# Generate response using QA chain
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
# Langchain sources are zero-based
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
return (
qa_chain,
gr.update(value=""),
new_history,
response_source1,
response_source1_page,
response_source2,
response_source2_page,
response_source3,
response_source3_page,
)
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""
<center><h1>Chat with your PDF</center></h1>
<center><h3>Ask any questions about your PDF documents</h3><center>
"""
)
# gr.Markdown(
# """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
# This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
# """
# )
with gr.Tab("Chatbot configuration"):
gr.Markdown("1. Upload the PDF(s)")
with gr.Row():
document = gr.Files(
height=100,
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload your PDF documents (single or multiple)",
)
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
gr.Markdown("2. Configure the vector database")
with gr.Row():
with gr.Row():
db_btn = gr.Radio(
["ChromaDB"],
label="Vector database type",
value="ChromaDB",
type="index",
info="Choose your vector database",
)
with gr.Accordion(
"Advanced options - Document text splitter", open=False
):
with gr.Row():
slider_chunk_size = gr.Slider(
minimum=100,
maximum=1000,
value=600,
step=20,
label="Chunk size",
info="Chunk size",
interactive=True,
)
with gr.Row():
slider_chunk_overlap = gr.Slider(
minimum=10,
maximum=200,
value=40,
step=10,
label="Chunk overlap",
info="Chunk overlap",
interactive=True,
)
with gr.Row():
db_btn = gr.Button("Generate vector database", size="sm")
with gr.Row():
db_progress = gr.Textbox(
label="Vector database initialization", value="0% Configure the DB"
)
gr.Markdown("3. Configure the LLM model")
with gr.Row():
with gr.Row():
llm_btn = gr.Radio(
list_llm_simple,
label="LLM models",
value=list_llm_simple[0],
type="index",
info="Choose your LLM model",
)
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Model temperature",
interactive=True,
)
with gr.Row():
slider_maxtokens = gr.Slider(
minimum=224,
maximum=4096,
value=1024,
step=32,
label="Max Tokens",
info="Model max tokens",
interactive=True,
)
with gr.Row():
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="top-k samples",
info="Model top-k samples",
interactive=True,
)
with gr.Row():
qachain_btn = gr.Button(
"Initialize Question Answering chain", size="sm"
)
with gr.Row():
llm_progress = gr.Textbox(
label="QA chain initialization", value="0% Configure the QA chain"
)
with gr.Tab("Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(
label="Reference 1", lines=2, container=True, scale=20
)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(
label="Reference 2", lines=2, container=True, scale=20
)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(
label="Reference 3", lines=2, container=True, scale=20
)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(
placeholder="Type message (e.g. 'What is this document about?')",
container=True,
)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
# Preprocessing events
# upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
db_btn.click(
initialize_database,
inputs=[document, slider_chunk_size, slider_chunk_overlap],
outputs=[vector_db, collection_name, db_progress],
)
qachain_btn.click(
initialize_LLM,
inputs=[
llm_btn,
slider_temperature,
slider_maxtokens,
slider_topk,
vector_db,
],
outputs=[qa_chain, llm_progress],
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
# Chatbot events
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[
qa_chain,
msg,
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[
qa_chain,
msg,
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[
chatbot,
doc_source1,
source1_page,
doc_source2,
source2_page,
doc_source3,
source3_page,
],
queue=False,
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()