rutsam's picture
add new code
69f6d78
raw
history blame
1.73 kB
import gradio as gr
import nemo.collections.asr as nemo_asr
from pydub import AudioSegment
import pyaudioconvert as pac
import timeit
hf_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(
model_name="mbazaNLP/Kinyarwanda_nemo_stt_conformer_model")
def convert (audio):
file_name = audio.name
if file_name.endswith("mp3") or file_name.endswith("wav") or file_name.endswith("ogg"):
if file_name.endswith("mp3"):
sound = AudioSegment.from_mp3(audio.name)
sound.export(audio.name, format="wav")
elif file_name.endswith("ogg"):
sound = AudioSegment.from_ogg(audio.name)
sound.export(audio.name, format="wav")
else:
return False
pac.convert_wav_to_16bit_mono(audio.name,audio.name)
return True
def transcribe(audio):
start = timeit.default_timer()
if convert(audio)== False:
return "The format must be mp3,wav and ogg"
files = [audio.name]
print(audio.name)
for fname, transcription in zip(files, hf_model.transcribe(paths2audio_files=files)):
stop = timeit.default_timer()
return "message"+ transcription[0]+ "\nfilename"+ audio.name+"\nTrancriptionTime"+stop-start
gradio_ui = gr.Interface(
fn=transcribe,
title="Kinyarwanda Speech Recognition",
description="Upload an audio clip or record from browser using microphone, and let AI do the hard work of transcribing.",
article = """
This demo showcases the pretrained model from deepspeech.
""",
inputs=[gr.inputs.Audio(label="Upload Audio File", type="file", optional=True), gr.inputs.Audio(source="microphone", type="file", optional=True, label="Record from microphone")],
outputs=[gr.outputs.Textbox(label="Recognized speech")]
)
gradio_ui.launch()