File size: 3,982 Bytes
8f69832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9996fa3
 
8f69832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9996fa3
 
 
 
 
8f69832
 
 
 
 
 
9996fa3
8f69832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9996fa3
 
 
 
 
 
8f69832
9996fa3
e7640ca
 
9996fa3
 
8f69832
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import time
import math
import random

from io import BytesIO
import numpy as np
from cairosvg import svg2png
import cv2

import filetype
from filetype.match import image_matchers

import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch

from common import defaults, mkdir
import imtool
import pipelines

BATCH_SIZE = 16

mkdir.make_dirs([defaults.AUGMENTED_IMAGES_PATH, defaults.AUGMENTED_LABELS_PATH])

logo_images = []
logo_alphas = []

background_images = [d for d in os.scandir(defaults.IMAGES_PATH)]

stats = {
    'failed': 0,
    'ok': 0
}

for d in os.scandir(defaults.LOGOS_DATA_PATH):
    img = None
    if not d.is_file():
        stats['failed'] += 1
        continue

    try:
        if filetype.match(d.path, matchers=image_matchers):
            img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED)
        else:
            png = svg2png(url=d.path)
            img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
        stats['ok'] += 1

        (h, w, c) = img.shape
        if c == 3:
            img = imtool.add_alpha(img)

        if img.ndim < 3:
            print(f'very bad dim: {img.ndim}')

        img = imtool.remove_white(img)
        (h, w, c) = img.shape

        assert(w > 10)
        assert(h > 10)
        (b, g, r, _) = cv2.split(img)
        alpha = img[:, :, 3]/255
        logo_images.append(cv2.merge([b, g, r]))
        # XXX(xaiki): we pass alpha as a float32 heatmap, because imgaug is pretty strict about what data it will process
        logo_alphas.append(np.dstack((alpha, alpha, alpha)).astype('float32'))

    except Exception as e:
        stats['failed'] += 1
        print(f'error loading: {d.path}: {e}')

print(stats)
batches = [UnnormalizedBatch(images=logo_images[i:i+BATCH_SIZE],heatmaps=logo_alphas[i:i+BATCH_SIZE])
           for i in range(math.floor(len(logo_images)/BATCH_SIZE))]

# We use a single, very fast augmenter here to show that batches
# are only loaded once there is space again in the buffer.
pipeline = pipelines.HUGE

def create_generator(lst):
    for b in lst:
        print(f"Loading next unaugmented batch...")
        yield b

batches_generator = create_generator(batches)

with pipeline.pool(processes=-1, seed=1) as pool:
    batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5)

    print(f"Requesting next augmented batch...")
    for i, batch_aug in enumerate(batches_aug):
        idx = list(range(len(batch_aug.images_aug)))
        random.shuffle(idx)
        for j, d in enumerate(background_images):
            img = imtool.remove_white(cv2.imread(d.path))
            basename = d.name.replace('.png', '') + f'.{i}.{j}'

            anotations = []
            for k in range(math.floor(len(batch_aug.images_aug)/3)):
                logo_idx = (j+k*4)%len(batch_aug.images_aug)
                logo = batch_aug.images_aug[logo_idx]

                # XXX(xaiki): we get alpha from heatmap, but will only use one channel
                # we could make mix_alpha into mix_mask and pass all 3 chanels
                alpha = cv2.split(batch_aug.heatmaps_aug[logo_idx])
                try:
                    img, bb, (w, h) = imtool.mix_alpha(img, logo, alpha[0], random.random(), random.random())
                    c = bb.to_centroid((h, w, 1))
                    anotations.append(c.to_anotation(0))
                except AssertionError as e:
                    print(f'couldnt process {i}, {j}: {e}')

            try:
                cv2.imwrite(f'{defaults.AUGMENTED_IMAGES_PATH}/{basename}.png', img)
                label_path = f"{defaults.AUGMENTED_LABELS_PATH}/{basename}.txt"
                with open(label_path, 'a') as f:
                    f.write('\n'.join(anotations))
            except Exception:
                print(f'couldnt write image {basename}')

        if i < len(batches)-1:
            print("Requesting next augmented batch...")