File size: 17,394 Bytes
e4d23ac
 
 
 
 
 
 
 
ddf05a4
e4d23ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import collections
import logging

import torch
from torch.nn import BCEWithLogitsLoss, Dropout, Linear
from transformers import AutoModel, XLNetModel, LongformerConfig
from transformers.models.longformer.modeling_longformer import LongformerEncoder
from huggingface_hub import PyTorchModelHubMixin
from LongLAT.LongLAT.models.utils import initial_code_title_vectors

logger = logging.getLogger("lwat")


class CodingModelConfig:
    def __init__(self,
                 transformer_model_name_or_path,
                 transformer_tokenizer_name,
                 transformer_layer_update_strategy,
                 num_chunks,
                 max_seq_length,
                 dropout,
                 dropout_att,
                 d_model,
                 label_dictionary,
                 num_labels,
                 use_code_representation,
                 code_max_seq_length,
                 code_batch_size,
                 multi_head_att,
                 chunk_att,
                 linear_init_mean,
                 linear_init_std,
                 document_pooling_strategy,
                 multi_head_chunk_attention,
                 num_hidden_layers):
        super(CodingModelConfig, self).__init__()
        self.transformer_model_name_or_path = transformer_model_name_or_path
        self.transformer_tokenizer_name = transformer_tokenizer_name
        self.transformer_layer_update_strategy = transformer_layer_update_strategy
        self.num_chunks = num_chunks
        self.max_seq_length = max_seq_length
        self.dropout = dropout
        self.dropout_att = dropout_att
        self.d_model = d_model
        # labels_dictionary is a dataframe with columns: icd9_code, long_title
        self.label_dictionary = label_dictionary
        self.num_labels = num_labels
        self.use_code_representation = use_code_representation
        self.code_max_seq_length = code_max_seq_length
        self.code_batch_size = code_batch_size
        self.multi_head_att = multi_head_att
        self.chunk_att = chunk_att
        self.linear_init_mean = linear_init_mean
        self.linear_init_std = linear_init_std
        self.document_pooling_strategy = document_pooling_strategy
        self.multi_head_chunk_attention = multi_head_chunk_attention
        self.num_hidden_layers = num_hidden_layers


class LableWiseAttentionLayer(torch.nn.Module):
    def __init__(self, coding_model_config, args):
        super(LableWiseAttentionLayer, self).__init__()

        self.config = coding_model_config
        self.args = args

        # layers
        self.l1_linear = torch.nn.Linear(self.config.d_model,
                                         self.config.d_model, bias=False)
        self.tanh = torch.nn.Tanh()
        self.l2_linear = torch.nn.Linear(self.config.d_model, self.config.num_labels, bias=False)
        self.softmax = torch.nn.Softmax(dim=1)

        # Mean pooling last hidden state of code title from transformer model as the initial code vectors
        self._init_linear_weights(mean=self.config.linear_init_mean, std=self.config.linear_init_std)

    def _init_linear_weights(self, mean, std):
        # normalize the l1 weights
        torch.nn.init.normal_(self.l1_linear.weight, mean, std)
        if self.l1_linear.bias is not None:
            self.l1_linear.bias.data.fill_(0)
        # initialize the l2
        if self.config.use_code_representation:
            code_vectors = initial_code_title_vectors(self.config.label_dictionary,
                                                      self.config.transformer_model_name_or_path,
                                                      self.config.transformer_tokenizer_name
                                                      if self.config.transformer_tokenizer_name
                                                      else self.config.transformer_model_name_or_path,
                                                      self.config.code_max_seq_length,
                                                      self.config.code_batch_size,
                                                      self.config.d_model,
                                                      self.args.device)

            self.l2_linear.weight = torch.nn.Parameter(code_vectors, requires_grad=True)
        torch.nn.init.normal_(self.l2_linear.weight, mean, std)
        if self.l2_linear.bias is not None:
            self.l2_linear.bias.data.fill_(0)

    def forward(self, x):
        # input: (batch_size, max_seq_length, transformer_hidden_size)
        # output: (batch_size, max_seq_length, transformer_hidden_size)
        # Z = Tan(WH)
        l1_output = self.tanh(self.l1_linear(x))
        # softmax(UZ)
        # l2_linear output shape: (batch_size, max_seq_length, num_labels)
        # attention_weight shape: (batch_size, num_labels, max_seq_length)
        attention_weight = self.softmax(self.l2_linear(l1_output)).transpose(1, 2)
        # attention_output shpae: (batch_size, num_labels, transformer_hidden_size)
        attention_output = torch.matmul(attention_weight, x)

        return attention_output, attention_weight

class ChunkAttentionLayer(torch.nn.Module):
    def __init__(self, coding_model_config, args):
        super(ChunkAttentionLayer, self).__init__()

        self.config = coding_model_config
        self.args = args

        # layers
        self.l1_linear = torch.nn.Linear(self.config.d_model,
                                         self.config.d_model, bias=False)
        self.tanh = torch.nn.Tanh()
        self.l2_linear = torch.nn.Linear(self.config.d_model, 1, bias=False)
        self.softmax = torch.nn.Softmax(dim=1)

        self._init_linear_weights(mean=self.config.linear_init_mean, std=self.config.linear_init_std)

    def _init_linear_weights(self, mean, std):
        # initialize the l1
        torch.nn.init.normal_(self.l1_linear.weight, mean, std)
        if self.l1_linear.bias is not None:
            self.l1_linear.bias.data.fill_(0)
        # initialize the l2
        torch.nn.init.normal_(self.l2_linear.weight, mean, std)
        if self.l2_linear.bias is not None:
            self.l2_linear.bias.data.fill_(0)

    def forward(self, x):
        # input: (batch_size, num_chunks, transformer_hidden_size)
        # output: (batch_size, num_chunks, transformer_hidden_size)
        # Z = Tan(WH)
        l1_output = self.tanh(self.l1_linear(x))
        # softmax(UZ)
        # l2_linear output shape: (batch_size, num_chunks, 1)
        # attention_weight shape: (batch_size, 1, num_chunks)
        attention_weight = self.softmax(self.l2_linear(l1_output)).transpose(1, 2)
        # attention_output shpae: (batch_size, 1, transformer_hidden_size)
        attention_output = torch.matmul(attention_weight, x)

        return attention_output, attention_weight

# define the model class
class CodingModel(torch.nn.Module, PyTorchModelHubMixin):
    def __init__(self, coding_model_config, args, **kwargs):
        super(CodingModel, self).__init__()
        self.coding_model_config = coding_model_config
        self.args = args
        # layers
        self.transformer_layer = AutoModel.from_pretrained(self.coding_model_config.transformer_model_name_or_path)
        if isinstance(self.transformer_layer, XLNetModel):
            self.transformer_layer.config.use_mems_eval = False
        self.dropout = Dropout(p=self.coding_model_config.dropout)

        if self.coding_model_config.multi_head_att:
            # initial multi head attention according to the num_chunks
            self.label_wise_attention_layer = torch.nn.ModuleList(
                [LableWiseAttentionLayer(coding_model_config, args)
                 for _ in range(self.coding_model_config.num_chunks)])
        else:
            self.label_wise_attention_layer = LableWiseAttentionLayer(coding_model_config, args)
        self.dropout_att = Dropout(p=self.coding_model_config.dropout_att)

        # initial chunk attention
        if self.coding_model_config.chunk_att:
            if self.coding_model_config.multi_head_chunk_attention:
                self.chunk_attention_layer = torch.nn.ModuleList([ChunkAttentionLayer(coding_model_config, args)
                                                                  for _ in range(self.coding_model_config.num_labels)])
            else:
                self.chunk_attention_layer = ChunkAttentionLayer(coding_model_config, args)

            self.classifier_layer = Linear(self.coding_model_config.d_model,
                                           self.coding_model_config.num_labels)
        else:
            if self.coding_model_config.document_pooling_strategy == "flat":
                self.classifier_layer = Linear(self.coding_model_config.num_chunks * self.coding_model_config.d_model,
                                       self.coding_model_config.num_labels)
            else: # max or mean pooling
                self.classifier_layer = Linear(self.coding_model_config.d_model,
                                               self.coding_model_config.num_labels)
        self.sigmoid = torch.nn.Sigmoid()

        if self.coding_model_config.transformer_layer_update_strategy == "no":
            self.freeze_all_transformer_layers()
        elif self.coding_model_config.transformer_layer_update_strategy == "last":
            self.freeze_all_transformer_layers()
            self.unfreeze_transformer_last_layers()

        # initialize the weights of classifier
        self._init_linear_weights(mean=self.coding_model_config.linear_init_mean, std=self.coding_model_config.linear_init_std)

    def _init_linear_weights(self, mean, std):
        torch.nn.init.normal_(self.classifier_layer.weight, mean, std)

    def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor):
        # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
        # (global_attention_mask + 1) => 1 for local attention, 2 for global attention
        # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
        if attention_mask is not None:
            attention_mask = attention_mask * (global_attention_mask + 1)
        else:
            # simply use `global_attention_mask` as `attention_mask`
            # if no `attention_mask` is given
            attention_mask = global_attention_mask + 1
        return attention_mask
    
    def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, targets=None):
        # input ids/mask/type_ids shape: (batch_size, num_chunks, max_seq_length)
        # labels shape: (batch_size, num_labels)
        transformer_output = []

        # pass chunk by chunk into transformer layer in the batches.
        # input (batch_size, sequence_length)
        for i in range(self.coding_model_config.num_chunks):
            l1_output = self.transformer_layer(input_ids=input_ids[:, i, :],
                                               attention_mask=attention_mask[:, i, :],
                                               token_type_ids=token_type_ids[:, i, :])
            # output hidden state shape: (batch_size, sequence_length, hidden_size)
            transformer_output.append(l1_output[0])

        # transpose back chunk and batch size dimensions
        transformer_output = torch.stack(transformer_output)
        transformer_output = transformer_output.transpose(0, 1)
        # dropout transformer output
        l2_dropout = self.dropout(transformer_output)

        config = LongformerConfig.from_pretrained("allenai/longformer-base-4096")
        config.num_labels =5
        config.num_hidden_layers = 2
        # self.coding_model_config.num_hidden_layers
        config.hidden_size = self.coding_model_config.d_model
        config.attention_window  = [512, 512]
        longformer_layer = LongformerEncoder(config)
        # longformer_layer = longformer_layer(config)
        longformer_layer = longformer_layer.to(torch.device("cuda:0"))
        l2_dropout= l2_dropout.reshape(l2_dropout.shape[0], l2_dropout.shape[1]*l2_dropout.shape[2], l2_dropout.shape[3])
        attention_mask = attention_mask.reshape(attention_mask.shape[0], attention_mask.shape[1]*attention_mask.shape[2])
        # is_index_masked = attention_mask < 0

        global_attention_mask = torch.zeros_like(attention_mask)
        # global attention on cls token
        global_attention_positions = [0, 512, 1024, 1536, 2048, 2560, 3072, 3584, 4095]
        global_attention_mask[:, global_attention_positions] = 1

        if global_attention_mask is not None:
            attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)
        output = longformer_layer(l2_dropout, attention_mask=attention_mask,output_attentions=True)
        l2_dropout = self.dropout_att(output[0])
        l2_dropout = l2_dropout.reshape(l2_dropout.shape[0], self.coding_model_config.num_chunks, self.coding_model_config.max_seq_length, self.coding_model_config.d_model)

        # Label-wise attention layers
        # output: (batch_size, num_chunks, num_labels, hidden_size)
        attention_output = []
        attention_weights = []

        for i in range(self.coding_model_config.num_chunks):
            # input: (batch_size, max_seq_length, transformer_hidden_size)
            if self.coding_model_config.multi_head_att:
                attention_layer = self.label_wise_attention_layer[i]
            else:
                attention_layer = self.label_wise_attention_layer
            l3_attention, attention_weight = attention_layer(l2_dropout[:, i, :])
            # l3_attention shape: (batch_size, num_labels, hidden_size)
            # attention_weight: (batch_size, num_labels, max_seq_length)
            attention_output.append(l3_attention)
            attention_weights.append(attention_weight)

        attention_output = torch.stack(attention_output)
        attention_output = attention_output.transpose(0, 1)
        attention_weights = torch.stack(attention_weights)
        attention_weights = attention_weights.transpose(0, 1)

        l3_dropout = self.dropout_att(attention_output)

        if self.coding_model_config.chunk_att:
            # Chunk attention layers
            # output: (batch_size, num_labels, hidden_size)
            chunk_attention_output = []
            chunk_attention_weights = []

            for i in range(self.coding_model_config.num_labels):
                if self.coding_model_config.multi_head_chunk_attention:
                    chunk_attention = self.chunk_attention_layer[i]
                else:
                    chunk_attention = self.chunk_attention_layer
                l4_chunk_attention, l4_chunk_attention_weights = chunk_attention(l3_dropout[:, :, i])
                chunk_attention_output.append(l4_chunk_attention.squeeze(dim=1))
                chunk_attention_weights.append(l4_chunk_attention_weights.squeeze(dim=1))

            chunk_attention_output = torch.stack(chunk_attention_output)
            chunk_attention_output = chunk_attention_output.transpose(0, 1)
            chunk_attention_weights = torch.stack(chunk_attention_weights)
            chunk_attention_weights = chunk_attention_weights.transpose(0, 1)
            # output shape: (batch_size, num_labels, hidden_size)
            l4_dropout = self.dropout_att(chunk_attention_output)
        else:
            # output shape: (batch_size, num_labels, hidden_size*num_chunks)
            l4_dropout = l3_dropout.transpose(1, 2)
            if self.coding_model_config.document_pooling_strategy == "flat":
                # Flatten layer. concatenate representation by labels
                l4_dropout = torch.flatten(l4_dropout, start_dim=2)
            elif self.coding_model_config.document_pooling_strategy == "max":
                l4_dropout = torch.amax(l4_dropout, 2)
            elif self.coding_model_config.document_pooling_strategy == "mean":
                l4_dropout = torch.mean(l4_dropout, 2)
            else:
                raise ValueError("Not supported pooling strategy")

        # classifier layer
        # each code has a binary linear formula
        logits = self.classifier_layer.weight.mul(l4_dropout).sum(dim=2).add(self.classifier_layer.bias)

        loss_fct = BCEWithLogitsLoss()
        loss = loss_fct(logits, targets)

        return {
            "loss": loss,
            "logits": logits,
            "label_attention_weights": attention_weights,
            "chunk_attention_weights": chunk_attention_weights if self.coding_model_config.chunk_att else []
        }

    def freeze_all_transformer_layers(self):
        """
        Freeze all layer weight parameters. They will not be updated during training.
        """
        for param in self.transformer_layer.parameters():
            param.requires_grad = False

    def unfreeze_all_transformer_layers(self):
        """
        Unfreeze all layers weight parameters. They will be updated during training.
        """
        for param in self.transformer_layer.parameters():
            param.requires_grad = True

    def unfreeze_transformer_last_layers(self):
        for name, param in self.transformer_layer.named_parameters():
            if "layer.11" in name or "pooler" in name:
                param.requires_grad = True