Spaces:
Sleeping
Sleeping
import collections | |
import logging | |
import torch | |
from torch.nn import BCEWithLogitsLoss, Dropout, Linear | |
from transformers import AutoModel, XLNetModel | |
from huggingface_hub import PyTorchModelHubMixin | |
from LongLAT.LongLAT.models.utils import initial_code_title_vectors | |
logger = logging.getLogger("lwat") | |
class CodingModelConfig: | |
def __init__(self, | |
transformer_model_name_or_path, | |
transformer_tokenizer_name, | |
transformer_layer_update_strategy, | |
num_chunks, | |
max_seq_length, | |
dropout, | |
dropout_att, | |
d_model, | |
label_dictionary, | |
num_labels, | |
use_code_representation, | |
code_max_seq_length, | |
code_batch_size, | |
multi_head_att, | |
chunk_att, | |
linear_init_mean, | |
linear_init_std, | |
document_pooling_strategy, | |
multi_head_chunk_attention, | |
num_hidden_layers): | |
super(CodingModelConfig, self).__init__() | |
self.transformer_model_name_or_path = transformer_model_name_or_path | |
self.transformer_tokenizer_name = transformer_tokenizer_name | |
self.transformer_layer_update_strategy = transformer_layer_update_strategy | |
self.num_chunks = num_chunks | |
self.max_seq_length = max_seq_length | |
self.dropout = dropout | |
self.dropout_att = dropout_att | |
self.d_model = d_model | |
# labels_dictionary is a dataframe with columns: icd9_code, long_title | |
self.label_dictionary = label_dictionary | |
self.num_labels = num_labels | |
self.use_code_representation = use_code_representation | |
self.code_max_seq_length = code_max_seq_length | |
self.code_batch_size = code_batch_size | |
self.multi_head_att = multi_head_att | |
self.chunk_att = chunk_att | |
self.linear_init_mean = linear_init_mean | |
self.linear_init_std = linear_init_std | |
self.document_pooling_strategy = document_pooling_strategy | |
self.multi_head_chunk_attention = multi_head_chunk_attention | |
self.num_hidden_layers = num_hidden_layers | |
class LableWiseAttentionLayer(torch.nn.Module): | |
def __init__(self, coding_model_config, args): | |
super(LableWiseAttentionLayer, self).__init__() | |
self.config = coding_model_config | |
self.args = args | |
# layers | |
self.l1_linear = torch.nn.Linear(self.config.d_model, | |
self.config.d_model, bias=False) | |
self.tanh = torch.nn.Tanh() | |
self.l2_linear = torch.nn.Linear(self.config.d_model, self.config.num_labels, bias=False) | |
self.softmax = torch.nn.Softmax(dim=1) | |
# Mean pooling last hidden state of code title from transformer model as the initial code vectors | |
self._init_linear_weights(mean=self.config.linear_init_mean, std=self.config.linear_init_std) | |
def _init_linear_weights(self, mean, std): | |
# normalize the l1 weights | |
torch.nn.init.normal_(self.l1_linear.weight, mean, std) | |
if self.l1_linear.bias is not None: | |
self.l1_linear.bias.data.fill_(0) | |
# initialize the l2 | |
if self.config.use_code_representation: | |
code_vectors = initial_code_title_vectors(self.config.label_dictionary, | |
self.config.transformer_model_name_or_path, | |
self.config.transformer_tokenizer_name | |
if self.config.transformer_tokenizer_name | |
else self.config.transformer_model_name_or_path, | |
self.config.code_max_seq_length, | |
self.config.code_batch_size, | |
self.config.d_model, | |
self.args.device) | |
self.l2_linear.weight = torch.nn.Parameter(code_vectors, requires_grad=True) | |
torch.nn.init.normal_(self.l2_linear.weight, mean, std) | |
if self.l2_linear.bias is not None: | |
self.l2_linear.bias.data.fill_(0) | |
def forward(self, x): | |
# input: (batch_size, max_seq_length, transformer_hidden_size) | |
# output: (batch_size, max_seq_length, transformer_hidden_size) | |
# Z = Tan(WH) | |
l1_output = self.tanh(self.l1_linear(x)) | |
# softmax(UZ) | |
# l2_linear output shape: (batch_size, max_seq_length, num_labels) | |
# attention_weight shape: (batch_size, num_labels, max_seq_length) | |
attention_weight = self.softmax(self.l2_linear(l1_output)).transpose(1, 2) | |
# attention_output shpae: (batch_size, num_labels, transformer_hidden_size) | |
attention_output = torch.matmul(attention_weight, x) | |
return attention_output, attention_weight | |
class ChunkAttentionLayer(torch.nn.Module): | |
def __init__(self, coding_model_config, args): | |
super(ChunkAttentionLayer, self).__init__() | |
self.config = coding_model_config | |
self.args = args | |
# layers | |
self.l1_linear = torch.nn.Linear(self.config.d_model, | |
self.config.d_model, bias=False) | |
self.tanh = torch.nn.Tanh() | |
self.l2_linear = torch.nn.Linear(self.config.d_model, 1, bias=False) | |
self.softmax = torch.nn.Softmax(dim=1) | |
self._init_linear_weights(mean=self.config.linear_init_mean, std=self.config.linear_init_std) | |
def _init_linear_weights(self, mean, std): | |
# initialize the l1 | |
torch.nn.init.normal_(self.l1_linear.weight, mean, std) | |
if self.l1_linear.bias is not None: | |
self.l1_linear.bias.data.fill_(0) | |
# initialize the l2 | |
torch.nn.init.normal_(self.l2_linear.weight, mean, std) | |
if self.l2_linear.bias is not None: | |
self.l2_linear.bias.data.fill_(0) | |
def forward(self, x): | |
# input: (batch_size, num_chunks, transformer_hidden_size) | |
# output: (batch_size, num_chunks, transformer_hidden_size) | |
# Z = Tan(WH) | |
l1_output = self.tanh(self.l1_linear(x)) | |
# softmax(UZ) | |
# l2_linear output shape: (batch_size, num_chunks, 1) | |
# attention_weight shape: (batch_size, 1, num_chunks) | |
attention_weight = self.softmax(self.l2_linear(l1_output)).transpose(1, 2) | |
# attention_output shpae: (batch_size, 1, transformer_hidden_size) | |
attention_output = torch.matmul(attention_weight, x) | |
return attention_output, attention_weight | |
# define the model class | |
class CodingModel(torch.nn.Module, PyTorchModelHubMixin): | |
def __init__(self, coding_model_config, args, **kwargs): | |
super(CodingModel, self).__init__() | |
self.coding_model_config = coding_model_config | |
self.args = args | |
# layers | |
self.transformer_layer = AutoModel.from_pretrained(self.coding_model_config.transformer_model_name_or_path) | |
if isinstance(self.transformer_layer, XLNetModel): | |
self.transformer_layer.config.use_mems_eval = False | |
self.dropout = Dropout(p=self.coding_model_config.dropout) | |
if self.coding_model_config.multi_head_att: | |
# initial multi head attention according to the num_chunks | |
self.label_wise_attention_layer = torch.nn.ModuleList( | |
[LableWiseAttentionLayer(coding_model_config, args) | |
for _ in range(self.coding_model_config.num_chunks)]) | |
else: | |
self.label_wise_attention_layer = LableWiseAttentionLayer(coding_model_config, args) | |
self.dropout_att = Dropout(p=self.coding_model_config.dropout_att) | |
# initial chunk attention | |
if self.coding_model_config.chunk_att: | |
if self.coding_model_config.multi_head_chunk_attention: | |
self.chunk_attention_layer = torch.nn.ModuleList([ChunkAttentionLayer(coding_model_config, args) | |
for _ in range(self.coding_model_config.num_labels)]) | |
else: | |
self.chunk_attention_layer = ChunkAttentionLayer(coding_model_config, args) | |
self.classifier_layer = Linear(self.coding_model_config.d_model, | |
self.coding_model_config.num_labels) | |
else: | |
if self.coding_model_config.document_pooling_strategy == "flat": | |
self.classifier_layer = Linear(self.coding_model_config.num_chunks * self.coding_model_config.d_model, | |
self.coding_model_config.num_labels) | |
else: # max or mean pooling | |
self.classifier_layer = Linear(self.coding_model_config.d_model, | |
self.coding_model_config.num_labels) | |
self.sigmoid = torch.nn.Sigmoid() | |
if self.coding_model_config.transformer_layer_update_strategy == "no": | |
self.freeze_all_transformer_layers() | |
elif self.coding_model_config.transformer_layer_update_strategy == "last": | |
self.freeze_all_transformer_layers() | |
self.unfreeze_transformer_last_layers() | |
# initialize the weights of classifier | |
self._init_linear_weights(mean=self.coding_model_config.linear_init_mean, std=self.coding_model_config.linear_init_std) | |
def _init_linear_weights(self, mean, std): | |
torch.nn.init.normal_(self.classifier_layer.weight, mean, std) | |
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, targets=None): | |
# input ids/mask/type_ids shape: (batch_size, num_chunks, max_seq_length) | |
# labels shape: (batch_size, num_labels) | |
transformer_output = [] | |
# pass chunk by chunk into transformer layer in the batches. | |
# input (batch_size, sequence_length) | |
for i in range(self.coding_model_config.num_chunks): | |
l1_output = self.transformer_layer(input_ids=input_ids[:, i, :], | |
attention_mask=attention_mask[:, i, :], | |
token_type_ids=token_type_ids[:, i, :]) | |
# output hidden state shape: (batch_size, sequence_length, hidden_size) | |
transformer_output.append(l1_output[0]) | |
# transpose back chunk and batch size dimensions | |
transformer_output = torch.stack(transformer_output) | |
transformer_output = transformer_output.transpose(0, 1) | |
# dropout transformer output | |
l2_dropout = self.dropout(transformer_output) | |
# Label-wise attention layers | |
# output: (batch_size, num_chunks, num_labels, hidden_size) | |
attention_output = [] | |
attention_weights = [] | |
for i in range(self.coding_model_config.num_chunks): | |
# input: (batch_size, max_seq_length, transformer_hidden_size) | |
if self.coding_model_config.multi_head_att: | |
attention_layer = self.label_wise_attention_layer[i] | |
else: | |
attention_layer = self.label_wise_attention_layer | |
l3_attention, attention_weight = attention_layer(l2_dropout[:, i, :]) | |
# l3_attention shape: (batch_size, num_labels, hidden_size) | |
# attention_weight: (batch_size, num_labels, max_seq_length) | |
attention_output.append(l3_attention) | |
attention_weights.append(attention_weight) | |
attention_output = torch.stack(attention_output) | |
attention_output = attention_output.transpose(0, 1) | |
attention_weights = torch.stack(attention_weights) | |
attention_weights = attention_weights.transpose(0, 1) | |
l3_dropout = self.dropout_att(attention_output) | |
if self.coding_model_config.chunk_att: | |
# Chunk attention layers | |
# output: (batch_size, num_labels, hidden_size) | |
chunk_attention_output = [] | |
chunk_attention_weights = [] | |
for i in range(self.coding_model_config.num_labels): | |
if self.coding_model_config.multi_head_chunk_attention: | |
chunk_attention = self.chunk_attention_layer[i] | |
else: | |
chunk_attention = self.chunk_attention_layer | |
l4_chunk_attention, l4_chunk_attention_weights = chunk_attention(l3_dropout[:, :, i]) | |
chunk_attention_output.append(l4_chunk_attention.squeeze(dim=1)) | |
chunk_attention_weights.append(l4_chunk_attention_weights.squeeze(dim=1)) | |
chunk_attention_output = torch.stack(chunk_attention_output) | |
chunk_attention_output = chunk_attention_output.transpose(0, 1) | |
chunk_attention_weights = torch.stack(chunk_attention_weights) | |
chunk_attention_weights = chunk_attention_weights.transpose(0, 1) | |
# output shape: (batch_size, num_labels, hidden_size) | |
l4_dropout = self.dropout_att(chunk_attention_output) | |
else: | |
# output shape: (batch_size, num_labels, hidden_size*num_chunks) | |
l4_dropout = l3_dropout.transpose(1, 2) | |
if self.coding_model_config.document_pooling_strategy == "flat": | |
# Flatten layer. concatenate representation by labels | |
l4_dropout = torch.flatten(l4_dropout, start_dim=2) | |
elif self.coding_model_config.document_pooling_strategy == "max": | |
l4_dropout = torch.amax(l4_dropout, 2) | |
elif self.coding_model_config.document_pooling_strategy == "mean": | |
l4_dropout = torch.mean(l4_dropout, 2) | |
else: | |
raise ValueError("Not supported pooling strategy") | |
# classifier layer | |
# each code has a binary linear formula | |
logits = self.classifier_layer.weight.mul(l4_dropout).sum(dim=2).add(self.classifier_layer.bias) | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, targets) | |
return { | |
"loss": loss, | |
"logits": logits, | |
"label_attention_weights": attention_weights, | |
"chunk_attention_weights": chunk_attention_weights if self.coding_model_config.chunk_att else [] | |
} | |
def freeze_all_transformer_layers(self): | |
""" | |
Freeze all layer weight parameters. They will not be updated during training. | |
""" | |
for param in self.transformer_layer.parameters(): | |
param.requires_grad = False | |
def unfreeze_all_transformer_layers(self): | |
""" | |
Unfreeze all layers weight parameters. They will be updated during training. | |
""" | |
for param in self.transformer_layer.parameters(): | |
param.requires_grad = True | |
def unfreeze_transformer_last_layers(self): | |
for name, param in self.transformer_layer.named_parameters(): | |
if "layer.11" in name or "pooler" in name: | |
param.requires_grad = True | |