Spaces:
Runtime error
Runtime error
import transformers | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
st.title("English-Vietnamese Text Translator") | |
st.write("A simple interface to translate from English to Vietnamese, and vice versa.") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") | |
def load_model(model_name): | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
return model | |
model = load_model("facebook/nllb-200-distilled-600M") | |
src_lang_selection = st.radio( | |
"Select Your Source Language:", | |
('English', 'Vietnamese')) | |
if src_lang_selection == "English": | |
src_lang = "eng_Latn" | |
tgt_lang = "vie_Latn" | |
else: | |
src_lang = "vie_Latn" | |
tgt_lang = "eng_Latn" | |
# default_value = "UN Chief says there is no military solution in Syria" | |
sent = st.text_area("Input Your Text Here", height = 275) | |
if st.button("Run"): | |
with st.spinner("Working Hard..."): | |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang) | |
trans_text = translator(sent)[0]["translation_text"] | |
st.write(trans_text) | |
st.success("Done!") | |
st.write("For feedback/requests, write to [email protected].") |