Mel Nguyen (she/her)
update app.py
20cb92b
import transformers
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("VietAI/gpt-neo-1.3B-vietnamese-news")
@st.cache
def load_model(model_name):
model = AutoModelForCausalLM.from_pretrained(model_name)
return model
model = load_model("VietAI/gpt-neo-1.3B-vietnamese-news")
def infer(input_ids, max_length):
output_sequences = model.generate(
input_ids=input_ids,
max_length=max_length,
do_sample=True,
temperature=0.9,
top_k=20,
#top_p=top_p,
#num_return_sequences=1
)
return output_sequences
default_value = "Tiềm năng của trí tuệ nhân tạo"
st.title("Vietnamese Text Generation With Transformers")
st.write("This app generates Vietnamese text based on a given prompt. To change the parameters of the generated text, adjust the slider on the left and click Generate Text again.")
st.write("It might be a bit slow after you change the generated text length. Be patient!")
sent = st.text_area("Text", default_value, height = 275)
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=500)
# We don't really need these params. It's a lot slower.
# temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
# top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
# top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
if st.button("Generate Text"):
with st.spinner("Working Hard..."):
encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt")
if encoded_prompt.size()[-1] == 0:
input_ids = None
else:
input_ids = encoded_prompt
gen_tokens = infer(encoded_prompt, max_length)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
st.write(gen_text)
st.success("Done!")
st.write("For feedback/requests, write to [email protected].")