Spaces:
Runtime error
Runtime error
Mel Nguyen (she/her)
commited on
Commit
·
a26c6e8
1
Parent(s):
457b136
Add files
Browse files- app.py +46 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("VietAI/gpt-neo-1.3B-vietnamese-news")
|
7 |
+
@st.cache
|
8 |
+
def load_model(model_name):
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
return model
|
11 |
+
|
12 |
+
model = load_model("VietAI/gpt-neo-1.3B-vietnamese-news")
|
13 |
+
def infer(input_ids, max_length):
|
14 |
+
|
15 |
+
output_sequences = model.generate(
|
16 |
+
input_ids=input_ids,
|
17 |
+
max_length=max_length,
|
18 |
+
do_sample=True,
|
19 |
+
temperature=0.9,
|
20 |
+
top_k=20,
|
21 |
+
#top_p=top_p,
|
22 |
+
#num_return_sequences=1
|
23 |
+
)
|
24 |
+
|
25 |
+
return output_sequences
|
26 |
+
|
27 |
+
default_value = "Have fun!"
|
28 |
+
|
29 |
+
st.title("Write with Transformers 🦄")
|
30 |
+
st.write("Generate Vietnamese text from a given prompt")
|
31 |
+
|
32 |
+
sent = st.text_area("Text", default_value, height = 275)
|
33 |
+
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30)
|
34 |
+
#temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
|
35 |
+
#top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
|
36 |
+
#top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
|
37 |
+
|
38 |
+
encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt")
|
39 |
+
if encoded_prompt.size()[-1] == 0:
|
40 |
+
input_ids = None
|
41 |
+
else:
|
42 |
+
input_ids = encoded_prompt
|
43 |
+
|
44 |
+
gen_tokens = infer(encoded_prompt, max_length)
|
45 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
46 |
+
st.write(gen_text)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
streamlit
|
3 |
+
torch
|