Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union, List | |
import math | |
import numpy as np | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
from IPython import embed | |
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
""" | |
prev_sample: torch.FloatTensor | |
class PyramidFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
Euler scheduler. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
timestep_spacing (`str`, defaults to `"linspace"`): | |
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
shift (`float`, defaults to 1.0): | |
The shift value for the timestep schedule. | |
""" | |
_compatibles = [] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
shift: float = 1.0, # Following Stable diffusion 3, | |
stages: int = 3, | |
stage_range: List = [0, 1/3, 2/3, 1], | |
gamma: float = 1/3, | |
): | |
self.timestep_ratios = {} # The timestep ratio for each stage | |
self.timesteps_per_stage = {} # The detailed timesteps per stage | |
self.sigmas_per_stage = {} | |
self.start_sigmas = {} | |
self.end_sigmas = {} | |
self.ori_start_sigmas = {} | |
# self.init_sigmas() | |
self.init_sigmas_for_each_stage() | |
self.sigma_min = self.sigmas[-1].item() | |
self.sigma_max = self.sigmas[0].item() | |
self.gamma = gamma | |
def init_sigmas(self): | |
""" | |
initialize the global timesteps and sigmas | |
""" | |
num_train_timesteps = self.config.num_train_timesteps | |
shift = self.config.shift | |
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
sigmas = timesteps / num_train_timesteps | |
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) | |
self.timesteps = sigmas * num_train_timesteps | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
def init_sigmas_for_each_stage(self): | |
""" | |
Init the timesteps for each stage | |
""" | |
self.init_sigmas() | |
stage_distance = [] | |
stages = self.config.stages | |
training_steps = self.config.num_train_timesteps | |
stage_range = self.config.stage_range | |
# Init the start and end point of each stage | |
for i_s in range(stages): | |
# To decide the start and ends point | |
start_indice = int(stage_range[i_s] * training_steps) | |
start_indice = max(start_indice, 0) | |
end_indice = int(stage_range[i_s+1] * training_steps) | |
end_indice = min(end_indice, training_steps) | |
start_sigma = self.sigmas[start_indice].item() | |
end_sigma = self.sigmas[end_indice].item() if end_indice < training_steps else 0.0 | |
self.ori_start_sigmas[i_s] = start_sigma | |
if i_s != 0: | |
ori_sigma = 1 - start_sigma | |
gamma = self.config.gamma | |
corrected_sigma = (1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)) * ori_sigma | |
# corrected_sigma = 1 / (2 - ori_sigma) * ori_sigma | |
start_sigma = 1 - corrected_sigma | |
stage_distance.append(start_sigma - end_sigma) | |
self.start_sigmas[i_s] = start_sigma | |
self.end_sigmas[i_s] = end_sigma | |
# Determine the ratio of each stage according to flow length | |
tot_distance = sum(stage_distance) | |
for i_s in range(stages): | |
if i_s == 0: | |
start_ratio = 0.0 | |
else: | |
start_ratio = sum(stage_distance[:i_s]) / tot_distance | |
if i_s == stages - 1: | |
end_ratio = 1.0 | |
else: | |
end_ratio = sum(stage_distance[:i_s+1]) / tot_distance | |
self.timestep_ratios[i_s] = (start_ratio, end_ratio) | |
# Determine the timesteps and sigmas for each stage | |
for i_s in range(stages): | |
timestep_ratio = self.timestep_ratios[i_s] | |
timestep_max = self.timesteps[int(timestep_ratio[0] * training_steps)] | |
timestep_min = self.timesteps[min(int(timestep_ratio[1] * training_steps), training_steps - 1)] | |
timesteps = np.linspace( | |
timestep_max, timestep_min, training_steps + 1, | |
) | |
self.timesteps_per_stage[i_s] = torch.from_numpy(timesteps[:-1]) | |
stage_sigmas = np.linspace( | |
1, 0, training_steps + 1, | |
) | |
self.sigmas_per_stage[i_s] = torch.from_numpy(stage_sigmas[:-1]) | |
def step_index(self): | |
""" | |
The index counter for current timestep. It will increase 1 after each scheduler step. | |
""" | |
return self._step_index | |
def begin_index(self): | |
""" | |
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
""" | |
return self._begin_index | |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
def set_begin_index(self, begin_index: int = 0): | |
""" | |
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
Args: | |
begin_index (`int`): | |
The begin index for the scheduler. | |
""" | |
self._begin_index = begin_index | |
def _sigma_to_t(self, sigma): | |
return sigma * self.config.num_train_timesteps | |
def set_timesteps(self, num_inference_steps: int, stage_index: int, device: Union[str, torch.device] = None): | |
""" | |
Setting the timesteps and sigmas for each stage | |
""" | |
self.num_inference_steps = num_inference_steps | |
training_steps = self.config.num_train_timesteps | |
self.init_sigmas() | |
stage_timesteps = self.timesteps_per_stage[stage_index] | |
timestep_max = stage_timesteps[0].item() | |
timestep_min = stage_timesteps[-1].item() | |
timesteps = np.linspace( | |
timestep_max, timestep_min, num_inference_steps, | |
) | |
self.timesteps = torch.from_numpy(timesteps).to(device=device) | |
stage_sigmas = self.sigmas_per_stage[stage_index] | |
sigma_max = stage_sigmas[0].item() | |
sigma_min = stage_sigmas[-1].item() | |
ratios = np.linspace( | |
sigma_max, sigma_min, num_inference_steps | |
) | |
sigmas = torch.from_numpy(ratios).to(device=device) | |
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
self._step_index = None | |
def index_for_timestep(self, timestep, schedule_timesteps=None): | |
if schedule_timesteps is None: | |
schedule_timesteps = self.timesteps | |
indices = (schedule_timesteps == timestep).nonzero() | |
# The sigma index that is taken for the **very** first `step` | |
# is always the second index (or the last index if there is only 1) | |
# This way we can ensure we don't accidentally skip a sigma in | |
# case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
pos = 1 if len(indices) > 1 else 0 | |
return indices[pos].item() | |
def _init_step_index(self, timestep): | |
if self.begin_index is None: | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
self._step_index = self.index_for_timestep(timestep) | |
else: | |
self._step_index = self._begin_index | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: Union[float, torch.FloatTensor], | |
sample: torch.FloatTensor, | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
return_dict (`bool`): | |
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or | |
tuple. | |
Returns: | |
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is | |
returned, otherwise a tuple is returned where the first element is the sample tensor. | |
""" | |
if ( | |
isinstance(timestep, int) | |
or isinstance(timestep, torch.IntTensor) | |
or isinstance(timestep, torch.LongTensor) | |
): | |
raise ValueError( | |
( | |
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | |
" one of the `scheduler.timesteps` as a timestep." | |
), | |
) | |
if self.step_index is None: | |
self._step_index = 0 | |
# Upcast to avoid precision issues when computing prev_sample | |
sample = sample.to(torch.float32) | |
sigma = self.sigmas[self.step_index] | |
sigma_next = self.sigmas[self.step_index + 1] | |
prev_sample = sample + (sigma_next - sigma) * model_output | |
# Cast sample back to model compatible dtype | |
prev_sample = prev_sample.to(model_output.dtype) | |
# upon completion increase step index by one | |
self._step_index += 1 | |
if not return_dict: | |
return (prev_sample,) | |
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) | |
def __len__(self): | |
return self.config.num_train_timesteps | |