Spaces:
Runtime error
Runtime error
File size: 9,801 Bytes
b3640b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.network import HourGlass2, SpixelNet, ColorProbNet
from models.transformer2d import EncoderLayer, DecoderLayer, TransformerEncoder, TransformerDecoder
from models.position_encoding import build_position_encoding
from models import basic, clusterkit, anchor_gen
from collections import OrderedDict
from utils import util, cielab
class SpixelSeg(nn.Module):
def __init__(self, inChannel=1, outChannel=9, batchNorm=True):
super(SpixelSeg, self).__init__()
self.net = SpixelNet(inChannel=inChannel, outChannel=outChannel, batchNorm=batchNorm)
def get_trainable_params(self, lr=1.0):
#print('=> [optimizer] finetune backbone with smaller lr')
params = []
for name, param in self.named_parameters():
if 'xxx' in name:
params.append({'params': param, 'lr': lr})
else:
params.append({'params': param})
return params
def forward(self, input_grays):
pred_probs = self.net(input_grays)
return pred_probs
class AnchorColorProb(nn.Module):
def __init__(self, inChannel=1, outChannel=313, sp_size=16, d_model=64, use_dense_pos=True, spix_pos=False, learning_pos=False, \
random_hint=False, hint2regress=False, enhanced=False, use_mask=False, rank=0, colorLabeler=None):
super(AnchorColorProb, self).__init__()
self.sp_size = sp_size
self.spix_pos = spix_pos
self.use_token_mask = use_mask
self.hint2regress = hint2regress
self.segnet = SpixelSeg(inChannel=1, outChannel=9, batchNorm=True)
self.repnet = ColorProbNet(inChannel=inChannel, outChannel=64)
self.enhanced = enhanced
if self.enhanced:
self.enhanceNet = HourGlass2(inChannel=64+1, outChannel=2, resNum=3, normLayer=nn.BatchNorm2d)
## transformer architecture
self.n_vocab = 313
d_model, dim_feedforward, nhead = d_model, 4*d_model, 8
dropout, activation = 0.1, "relu"
n_enc_layers, n_dec_layers = 6, 6
enc_layer = EncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, use_dense_pos)
self.wildpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos)
self.hintpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos)
if self.spix_pos:
n_pos_x, n_pos_y = 256, 256
else:
n_pos_x, n_pos_y = 256//sp_size, 16//sp_size
self.pos_enc = build_position_encoding(d_model//2, n_pos_x, n_pos_y, is_learned=False)
self.mid_word_prj = nn.Linear(d_model, self.n_vocab, bias=False)
if self.hint2regress:
self.trg_word_emb = nn.Linear(d_model+2+1, d_model, bias=False)
self.trg_word_prj = nn.Linear(d_model, 2, bias=False)
else:
self.trg_word_emb = nn.Linear(d_model+self.n_vocab+1, d_model, bias=False)
self.trg_word_prj = nn.Linear(d_model, self.n_vocab, bias=False)
self.colorLabeler = colorLabeler
anchor_mode = 'random' if random_hint else 'clustering'
self.anchorGen = anchor_gen.AnchorAnalysis(mode=anchor_mode, colorLabeler=self.colorLabeler)
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def load_and_froze_weight(self, checkpt_path):
data_dict = torch.load(checkpt_path, map_location=torch.device('cpu'))
'''
for param_tensor in data_dict['state_dict']:
print(param_tensor,'\t',data_dict['state_dict'][param_tensor].size())
'''
self.segnet.load_state_dict(data_dict['state_dict'])
for name, param in self.segnet.named_parameters():
param.requires_grad = False
self.segnet.eval()
def set_train(self):
## running mode only affect certain modules, e.g. Dropout, BN, etc.
self.repnet.train()
self.wildpath.train()
self.hintpath.train()
if self.enhanced:
self.enhanceNet.train()
def get_entry_mask(self, mask_tensor):
if mask_tensor is None:
return None
## flatten (N,1,H,W) to (N,HW)
return mask_tensor.flatten(1)
def forward(self, input_grays, input_colors, n_anchors=8, sampled_T=0):
'''
Notice: function was customized for inferece only
'''
affinity_map = self.segnet(input_grays)
pred_feats = self.repnet(input_grays)
if self.spix_pos:
full_pos_feats = self.pos_enc(pred_feats)
proxy_feats = torch.cat([pred_feats, input_colors, full_pos_feats], dim=1)
pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True)
feat_tokens = pooled_proxy_feats[:,:64,:,:]
spix_colors = pooled_proxy_feats[:,64:66,:,:]
pos_feats = pooled_proxy_feats[:,66:,:,:]
else:
proxy_feats = torch.cat([pred_feats, input_colors], dim=1)
pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True)
feat_tokens = pooled_proxy_feats[:,:64,:,:]
spix_colors = pooled_proxy_feats[:,64:,:,:]
pos_feats = self.pos_enc(feat_tokens)
token_labels = torch.max(self.colorLabeler.encode_ab2ind(spix_colors), dim=1, keepdim=True)[1]
spixel_sizes = basic.get_spixel_size(affinity_map, self.sp_size, self.sp_size)
all_one_map = torch.ones(spixel_sizes.shape, device=input_grays.device)
empty_entries = torch.where(spixel_sizes < 25/(self.sp_size**2), all_one_map, 1-all_one_map)
src_pad_mask = self.get_entry_mask(empty_entries) if self.use_token_mask else None
trg_pad_mask = src_pad_mask
## parallel prob
N,C,H,W = feat_tokens.shape
## (N,C,H,W) -> (HW,N,C)
src_pos_seq = pos_feats.flatten(2).permute(2, 0, 1)
src_seq = feat_tokens.flatten(2).permute(2, 0, 1)
## color prob branch
enc_out, _ = self.wildpath(src_seq, src_pos_seq, src_pad_mask)
pal_logit = self.mid_word_prj(enc_out)
pal_logit = pal_logit.permute(1, 2, 0).view(N,self.n_vocab,H,W)
## seed prob branch
## mask(N,1,H,W): sample anchors at clustering layers
color_feat = enc_out.permute(1, 2, 0).view(N,C,H,W)
hint_mask, cluster_mask = self.anchorGen(color_feat, n_anchors, spixel_sizes, use_sklearn_kmeans=False)
pred_prob = torch.softmax(pal_logit, dim=1)
color_feat2 = src_seq.permute(1, 2, 0).view(N,C,H,W)
#pred_prob, adj_matrix = self.anchorGen._detect_correlation(color_feat, pred_prob, hint_mask, thres=0.1)
if sampled_T < 0:
## GT anchor colors
sampled_spix_colors = spix_colors
elif sampled_T > 0:
top1_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=0)
top2_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=1)
top3_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=2)
## duplicate meta tensors
sampled_spix_colors = torch.cat((top1_spix_colors,top2_spix_colors,top3_spix_colors), dim=0)
N = 3*N
input_grays = input_grays.expand(N,-1,-1,-1)
hint_mask = hint_mask.expand(N,-1,-1,-1)
affinity_map = affinity_map.expand(N,-1,-1,-1)
src_seq = src_seq.expand(-1, N,-1)
src_pos_seq = src_pos_seq.expand(-1, N,-1)
else:
sampled_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=sampled_T)
## debug: controllable
if False:
hint_mask, sampled_spix_colors = basic.io_user_control(hint_mask, spix_colors, output=False)
sampled_token_labels = torch.max(self.colorLabeler.encode_ab2ind(sampled_spix_colors), dim=1, keepdim=True)[1]
## hint based prediction
## (N,C,H,W) -> (HW,N,C)
mask_seq = hint_mask.flatten(2).permute(2, 0, 1)
if self.hint2regress:
spix_colors_ = sampled_spix_colors
gt_seq = spix_colors_.flatten(2).permute(2, 0, 1)
hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * gt_seq, mask_seq], dim=2))
dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask)
else:
token_labels_ = sampled_token_labels
label_map = F.one_hot(token_labels_, num_classes=313).squeeze(1).float()
label_seq = label_map.permute(0, 3, 1, 2).flatten(2).permute(2, 0, 1)
hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * label_seq, mask_seq], dim=2))
dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask)
ref_logit = self.trg_word_prj(dec_out)
Ct = 2 if self.hint2regress else self.n_vocab
ref_logit = ref_logit.permute(1, 2, 0).view(N,Ct,H,W)
## pixelwise enhancement
pred_colors = None
if self.enhanced:
proc_feats = dec_out.permute(1, 2, 0).view(N,64,H,W)
full_feats = basic.upfeat(proc_feats, affinity_map, self.sp_size, self.sp_size)
pred_colors = self.enhanceNet(torch.cat((input_grays,full_feats), dim=1))
pred_colors = torch.tanh(pred_colors)
return pal_logit, ref_logit, pred_colors, affinity_map, spix_colors, hint_mask |