Spaces:
Sleeping
Sleeping
# =================== | |
# Part 1: Importing Libraries | |
# =================== | |
import matplotlib.pyplot as plt | |
# =================== | |
# Part 2: Data Preparation | |
# =================== | |
# Data | |
categories = ["Shear Sheep", "Milk Cow", "Combat Spider"] | |
values = [0.56, 0.74, 0.72] | |
# Axes limits, labels, and ticks | |
xlabel = "Probability of Improvement" | |
xticks = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | |
xtickslabel = ["0.0", "", "0.2", "", "0.4", "", "0.6", "", "0.8", "", "1.0"] | |
title = "Probability of Improvement over VLM Image Encoder Baseline Returns" | |
# =================== | |
# Part 3: Plot Configuration and Rendering | |
# =================== | |
# Create horizontal bar chart | |
plt.figure(figsize=(6, 2)) # Adjusting figure size to match original image dimensions | |
plt.barh(categories, values, color="#3b76af") | |
# Adding data labels | |
for index, value in enumerate(values): | |
plt.text(value, index, f" {value}", va="center", color="black") | |
# Adding title and labels | |
plt.title(title) | |
plt.xlabel(xlabel) | |
# Apply the xticks and labels | |
plt.xticks(xticks, xtickslabel) | |
plt.tick_params(axis="both", which="both", length=0) | |
# =================== | |
# Part 4: Saving Output | |
# =================== | |
# Show plot with tight layout | |
plt.tight_layout() | |
plt.savefig("bar_32.pdf", bbox_inches="tight") | |