Spaces:
Runtime error
Runtime error
from huggingface_hub import hf_hub_download | |
import re | |
from PIL import Image | |
import requests | |
from nougat.dataset.rasterize import rasterize_paper | |
from transformers import NougatProcessor, VisionEncoderDecoderModel | |
import torch | |
processor = NougatProcessor.from_pretrained("nielsr/nougat") | |
model = VisionEncoderDecoderModel.from_pretrained("nielsr/nougat") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def get_pdf(pdf_link): | |
unique_filename = f"{os.getcwd()}/downloaded_paper_{uuid.uuid4().hex}.pdf" | |
response = requests.get(pdf_link) | |
if response.status_code == 200: | |
with open(unique_filename, 'wb') as pdf_file: | |
pdf_file.write(response.content) | |
print("PDF downloaded successfully.") | |
else: | |
print("Failed to download the PDF.") | |
return unique_filename | |
def predict(image): | |
# prepare PDF image for the model | |
image = Image.open(image) | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# generate transcription (here we only generate 30 tokens) | |
outputs = model.generate( | |
pixel_values.to(device), | |
min_length=1, | |
max_new_tokens=30, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
) | |
sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
sequence = processor.post_process_generation(sequence, fix_markdown=False) | |
return sequence | |
def inference(pdf_file, pdf_link): | |
if pdf_file is None: | |
if pdf_link == '': | |
print("No file is uploaded and No link is provided") | |
return "No data provided. Upload a pdf file or provide a pdf link and try again!" | |
else: | |
file_name = get_pdf(pdf_link) | |
else: | |
file_name = pdf_file.name | |
pdf_name = pdf_file.name.split('/')[-1].split('.')[0] | |
images = rasterize_paper(file_name, return_pil=True) | |
sequence = "" | |
# infer for every page and concat | |
for image in images: | |
sequence += predict(image) | |
content = sequence.replace(r'\(', '$').replace(r'\)', '$').replace(r'\[', '$$').replace(r'\]', '$$') | |
return content | |
import gradio as gr | |
import uuid | |
import os | |
import requests | |
import re | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Nougat: Neural Optical Understanding for Academic Documents 🍫<center><h1>") | |
gr.HTML("<h3><center>Lukas Blecher et al. <a href='https://arxiv.org/pdf/2308.13418.pdf' target='_blank'>Paper</a>, <a href='https://facebookresearch.github.io/nougat/'>Project</a><center></h3>") | |
gr.HTML("<h3><center>This demo is based on transformers implementation of Nougat 🤗<center><h3>") | |
with gr.Row(): | |
mkd = gr.Markdown('<h4><center>Upload a PDF</center></h4>',scale=1) | |
mkd = gr.Markdown('<h4><center><i>OR</i></center></h4>',scale=1) | |
mkd = gr.Markdown('<h4><center>Provide a PDF link</center></h4>',scale=1) | |
with gr.Row(): | |
mkd = gr.Markdown("Upload a PDF",scale=1) | |
mkd = gr.Markdown('OR',scale=1) | |
mkd = gr.Markdown('Provide a PDF link',scale=1) | |
with gr.Row(equal_height=True): | |
pdf_file = gr.File(label='PDF 📑', file_count='single', scale=1) | |
pdf_link = gr.Textbox(placeholder='Enter an arxiv link here', label='Link to Paper🔗', scale=1) | |
with gr.Row(): | |
btn = gr.Button('Run Nougat 🍫') | |
clr = gr.Button('Clear 🧼') | |
output_headline = gr.Markdown("PDF converted to markup language through Nougat-OCR👇") | |
parsed_output = gr.Markdown(elem_id='mkd', value='OCR Output 📝') | |
btn.click(inference, [pdf_file, pdf_link], parsed_output ) | |
clr.click(lambda : (gr.update(value=None), | |
gr.update(value=None), | |
gr.update(value=None)), | |
[], | |
[pdf_file, pdf_link, parsed_output] | |
) | |
demo.queue() | |
demo.launch(debug=True) |