michellelychan's picture
Update app.py
467f7e2
import gradio as gr
from transformers import BarkModel, AutoProcessor
import torch
from scipy.io.wavfile import write as write_wav
import os
## if you run on GPU use the following code: ####
device = "cuda" if torch.cuda.is_available() else "cpu"
model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device)
model.enable_cpu_offload()
# ### if you run on CPU use the following code: ####
# device = "cpu"
# ### load in fp16
# model = BarkModel.from_pretrained("suno/bark-small").to(device)
processor = AutoProcessor.from_pretrained("suno/bark")
voice_preset = "v2/en_speaker_3"
# generate audio
# def generate_audio(text, preset, output_file_name="bark_generation"):
# file_name = output_file_name + ".wav"
# inputs = processor(text, voice_preset=preset)
# audio_array = model.generate(**inputs)
# audio_array = audio_array.cpu().numpy().squeeze()
# sample_rate = model.generation_config.sample_rate
# write_wav(file_name, sample_rate, audio_array)
# return file_name
def generate_audio(text, preset, output_file_name="bark_generation"):
file_name = output_file_name + ".wav"
inputs = processor(text, voice_preset=preset)
# Ensure the inputs are on the right device
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(device)
audio_array = model.generate(**inputs)
audio_array = audio_array.cpu().numpy().squeeze()
sample_rate = model.generation_config.sample_rate
write_wav(file_name, sample_rate, audio_array)
return file_name
#Bark Presets List
presets = ["v2/en_speaker_0","v2/en_speaker_1", "v2/en_speaker_2", "v2/en_speaker_3", "v2/en_speaker_4", "v2/en_speaker_5", "v2/en_speaker_6"]
#Gradio Interface
iface = gr.Interface(fn=generate_audio, inputs=["text", gr.components.Dropdown(choices=presets), "text"], outputs="audio")
iface.launch()