Spaces:
Running
on
L4
Running
on
L4
File size: 29,923 Bytes
5b71c3a 4b20d73 5b71c3a 4b20d73 5b71c3a c6067f0 5b71c3a 5471e91 5b71c3a c6067f0 5b71c3a c6067f0 5b71c3a 5471e91 5b71c3a 5471e91 5b71c3a 5471e91 5b71c3a cad9141 0431f29 cad9141 c6067f0 5b71c3a 5471e91 5b71c3a cad9141 5b71c3a 5471e91 5b71c3a 5471e91 5b71c3a 5471e91 5b71c3a cad9141 5b71c3a 5471e91 5b71c3a 5471e91 5b71c3a 5471e91 5b71c3a 4b20d73 5b71c3a 4b20d73 5b71c3a 4b20d73 5b71c3a 4b20d73 5b71c3a 4b20d73 5b71c3a 4b20d73 5b71c3a 6310e00 5b71c3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
import argparse
import logging
import random
import uuid
import numpy as np
from transformers import pipeline
from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5ForSpeechToSpeech
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
from datasets import load_dataset
from PIL import Image
import io
from torchvision import transforms
import torch
import torchaudio
from speechbrain.pretrained import WaveformEnhancement
import joblib
from huggingface_hub import hf_hub_url, cached_download
from transformers import AutoImageProcessor, TimesformerForVideoClassification
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation, AutoFeatureExtractor
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector, CannyDetector, MidasDetector
from controlnet_aux.open_pose.body import Body
from controlnet_aux.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large
from controlnet_aux.hed import Network
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
import warnings
import time
from espnet2.bin.tts_inference import Text2Speech
import soundfile as sf
from asteroid.models import BaseModel
import traceback
import os
import yaml
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="config.yaml")
args = parser.parse_args()
if __name__ != "__main__":
args.config = "config.gradio.yaml"
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader)
local_deployment = config["local_deployment"]
if config["inference_mode"] == "huggingface":
local_deployment = "none"
PROXY = None
if config["proxy"]:
PROXY = {
"https": config["proxy"],
}
start = time.time()
# local_models = "models/"
local_models = ""
def load_pipes(local_deployment):
other_pipes = {}
standard_pipes = {}
controlnet_sd_pipes = {}
if local_deployment in ["full"]:
other_pipes = {
# "Salesforce/blip-image-captioning-large": {
# "model": BlipForConditionalGeneration.from_pretrained(f"Salesforce/blip-image-captioning-large"),
# "processor": BlipProcessor.from_pretrained(f"Salesforce/blip-image-captioning-large"),
# "device": "cuda:0"
# },
"damo-vilab/text-to-video-ms-1.7b": {
"model": DiffusionPipeline.from_pretrained(f"{local_models}damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"),
"device": "cuda:0"
},
# "facebook/maskformer-swin-large-ade": {
# "model": MaskFormerForInstanceSegmentation.from_pretrained(f"facebook/maskformer-swin-large-ade"),
# "feature_extractor" : AutoFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade"),
# "device": "cuda:0"
# },
# "microsoft/trocr-base-printed": {
# "processor": TrOCRProcessor.from_pretrained(f"microsoft/trocr-base-printed"),
# "model": VisionEncoderDecoderModel.from_pretrained(f"microsoft/trocr-base-printed"),
# "device": "cuda:0"
# },
# "microsoft/trocr-base-handwritten": {
# "processor": TrOCRProcessor.from_pretrained(f"microsoft/trocr-base-handwritten"),
# "model": VisionEncoderDecoderModel.from_pretrained(f"microsoft/trocr-base-handwritten"),
# "device": "cuda:0"
# },
"JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": {
"model": BaseModel.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k"),
"device": "cuda:0"
},
# "CompVis/stable-diffusion-v1-4": {
# "model": DiffusionPipeline.from_pretrained(f"CompVis/stable-diffusion-v1-4"),
# "device": "cuda:0"
# },
# "stabilityai/stable-diffusion-2-1": {
# "model": DiffusionPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1"),
# "device": "cuda:0"
# },
# "microsoft/speecht5_tts":{
# "processor": SpeechT5Processor.from_pretrained(f"microsoft/speecht5_tts"),
# "model": SpeechT5ForTextToSpeech.from_pretrained(f"microsoft/speecht5_tts"),
# "vocoder": SpeechT5HifiGan.from_pretrained(f"microsoft/speecht5_hifigan"),
# "embeddings_dataset": load_dataset(f"Matthijs/cmu-arctic-xvectors", split="validation"),
# "device": "cuda:0"
# },
# "speechbrain/mtl-mimic-voicebank": {
# "model": WaveformEnhancement.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="models/mtl-mimic-voicebank"),
# "device": "cuda:0"
# },
"microsoft/speecht5_vc":{
"processor": SpeechT5Processor.from_pretrained(f"{local_models}microsoft/speecht5_vc"),
"model": SpeechT5ForSpeechToSpeech.from_pretrained(f"{local_models}microsoft/speecht5_vc"),
"vocoder": SpeechT5HifiGan.from_pretrained(f"{local_models}microsoft/speecht5_hifigan"),
"embeddings_dataset": load_dataset(f"{local_models}Matthijs/cmu-arctic-xvectors", split="validation"),
"device": "cuda:0"
},
# "julien-c/wine-quality": {
# "model": joblib.load(cached_download(hf_hub_url("julien-c/wine-quality", "sklearn_model.joblib")))
# },
# "facebook/timesformer-base-finetuned-k400": {
# "processor": AutoImageProcessor.from_pretrained(f"facebook/timesformer-base-finetuned-k400"),
# "model": TimesformerForVideoClassification.from_pretrained(f"facebook/timesformer-base-finetuned-k400"),
# "device": "cuda:0"
# },
"facebook/maskformer-swin-base-coco": {
"feature_extractor": MaskFormerFeatureExtractor.from_pretrained(f"{local_models}facebook/maskformer-swin-base-coco"),
"model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_models}facebook/maskformer-swin-base-coco"),
"device": "cuda:0"
},
"Intel/dpt-hybrid-midas": {
"model": DPTForDepthEstimation.from_pretrained(f"{local_models}Intel/dpt-hybrid-midas", low_cpu_mem_usage=True),
"feature_extractor": DPTFeatureExtractor.from_pretrained(f"{local_models}Intel/dpt-hybrid-midas"),
"device": "cuda:0"
}
}
if local_deployment in ["full", "standard"]:
standard_pipes = {
# "nlpconnect/vit-gpt2-image-captioning":{
# "model": VisionEncoderDecoderModel.from_pretrained(f"{local_models}nlpconnect/vit-gpt2-image-captioning"),
# "feature_extractor": ViTImageProcessor.from_pretrained(f"{local_models}nlpconnect/vit-gpt2-image-captioning"),
# "tokenizer": AutoTokenizer.from_pretrained(f"{local_models}nlpconnect/vit-gpt2-image-captioning"),
# "device": "cuda:0"
# },
"espnet/kan-bayashi_ljspeech_vits": {
"model": Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_vits"),
"device": "cuda:0"
},
# "lambdalabs/sd-image-variations-diffusers": {
# "model": DiffusionPipeline.from_pretrained(f"{local_models}lambdalabs/sd-image-variations-diffusers"), #torch_dtype=torch.float16
# "device": "cuda:0"
# },
"runwayml/stable-diffusion-v1-5": {
"model": DiffusionPipeline.from_pretrained(f"{local_models}runwayml/stable-diffusion-v1-5"),
"device": "cuda:0"
},
# "superb/wav2vec2-base-superb-ks": {
# "model": pipeline(task="audio-classification", model=f"superb/wav2vec2-base-superb-ks"),
# "device": "cuda:0"
# },
"openai/whisper-base": {
"model": pipeline(task="automatic-speech-recognition", model=f"{local_models}openai/whisper-base"),
"device": "cuda:0"
},
# "microsoft/speecht5_asr": {
# "model": pipeline(task="automatic-speech-recognition", model=f"{local_models}microsoft/speecht5_asr"),
# "device": "cuda:0"
# },
"Intel/dpt-large": {
"model": pipeline(task="depth-estimation", model=f"{local_models}Intel/dpt-large"),
"device": "cuda:0"
},
# "microsoft/beit-base-patch16-224-pt22k-ft22k": {
# "model": pipeline(task="image-classification", model=f"microsoft/beit-base-patch16-224-pt22k-ft22k"),
# "device": "cuda:0"
# },
"facebook/detr-resnet-50-panoptic": {
"model": pipeline(task="image-segmentation", model=f"{local_models}facebook/detr-resnet-50-panoptic"),
"device": "cuda:0"
},
"facebook/detr-resnet-101": {
"model": pipeline(task="object-detection", model=f"{local_models}facebook/detr-resnet-101"),
"device": "cuda:0"
},
# "openai/clip-vit-large-patch14": {
# "model": pipeline(task="zero-shot-image-classification", model=f"openai/clip-vit-large-patch14"),
# "device": "cuda:0"
# },
# "google/owlvit-base-patch32": {
# "model": pipeline(task="zero-shot-object-detection", model=f"{local_models}google/owlvit-base-patch32"),
# "device": "cuda:0"
# },
# "microsoft/DialoGPT-medium": {
# "model": pipeline(task="conversational", model=f"microsoft/DialoGPT-medium"),
# "device": "cuda:0"
# },
# "bert-base-uncased": {
# "model": pipeline(task="fill-mask", model=f"bert-base-uncased"),
# "device": "cuda:0"
# },
# "deepset/roberta-base-squad2": {
# "model": pipeline(task = "question-answering", model=f"deepset/roberta-base-squad2"),
# "device": "cuda:0"
# },
# "facebook/bart-large-cnn": {
# "model": pipeline(task="summarization", model=f"facebook/bart-large-cnn"),
# "device": "cuda:0"
# },
# "google/tapas-base-finetuned-wtq": {
# "model": pipeline(task="table-question-answering", model=f"google/tapas-base-finetuned-wtq"),
# "device": "cuda:0"
# },
# "distilbert-base-uncased-finetuned-sst-2-english": {
# "model": pipeline(task="text-classification", model=f"distilbert-base-uncased-finetuned-sst-2-english"),
# "device": "cuda:0"
# },
# "gpt2": {
# "model": pipeline(task="text-generation", model="gpt2"),
# "device": "cuda:0"
# },
# "mrm8488/t5-base-finetuned-question-generation-ap": {
# "model": pipeline(task="text2text-generation", model=f"mrm8488/t5-base-finetuned-question-generation-ap"),
# "device": "cuda:0"
# },
# "Jean-Baptiste/camembert-ner": {
# "model": pipeline(task="token-classification", model=f"Jean-Baptiste/camembert-ner", aggregation_strategy="simple"),
# "device": "cuda:0"
# },
# "t5-base": {
# "model": pipeline(task="translation", model=f"t5-base"),
# "device": "cuda:0"
# },
"impira/layoutlm-document-qa": {
"model": pipeline(task="document-question-answering", model=f"{local_models}impira/layoutlm-document-qa"),
"device": "cuda:0"
},
"ydshieh/vit-gpt2-coco-en": {
"model": pipeline(task="image-to-text", model=f"{local_models}ydshieh/vit-gpt2-coco-en"),
"device": "cuda:0"
},
"dandelin/vilt-b32-finetuned-vqa": {
"model": pipeline(task="visual-question-answering", model=f"{local_models}dandelin/vilt-b32-finetuned-vqa"),
"device": "cuda:0"
}
}
if local_deployment in ["full", "standard", "minimal"]:
controlnet = ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
controlnetpipe = StableDiffusionControlNetPipeline.from_pretrained(
f"{local_models}runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
hed_network = HEDdetector.from_pretrained('lllyasviel/ControlNet')
controlnet_sd_pipes = {
"openpose-control": {
"model": OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
},
"mlsd-control": {
"model": MLSDdetector.from_pretrained('lllyasviel/ControlNet')
},
"hed-control": {
"model": hed_network
},
"scribble-control": {
"model": hed_network
},
"midas-control": {
"model": MidasDetector.from_pretrained('lllyasviel/ControlNet')
},
"canny-control": {
"model": CannyDetector()
},
"lllyasviel/sd-controlnet-canny":{
"control": controlnet,
"model": controlnetpipe,
"device": "cuda:0"
},
"lllyasviel/sd-controlnet-depth":{
"control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16),
"model": controlnetpipe,
"device": "cuda:0"
},
"lllyasviel/sd-controlnet-hed":{
"control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-hed", torch_dtype=torch.float16),
"model": controlnetpipe,
"device": "cuda:0"
},
"lllyasviel/sd-controlnet-mlsd":{
"control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-mlsd", torch_dtype=torch.float16),
"model": controlnetpipe,
"device": "cuda:0"
},
"lllyasviel/sd-controlnet-openpose":{
"control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16),
"model": controlnetpipe,
"device": "cuda:0"
},
"lllyasviel/sd-controlnet-scribble":{
"control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16),
"model": controlnetpipe,
"device": "cuda:0"
},
"lllyasviel/sd-controlnet-seg":{
"control": ControlNetModel.from_pretrained(f"{local_models}lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16),
"model": controlnetpipe,
"device": "cuda:0"
}
}
pipes = {**standard_pipes, **other_pipes, **controlnet_sd_pipes}
return pipes
pipes = load_pipes(local_deployment)
end = time.time()
during = end - start
print(f"[ ready ] {during}s")
def running():
return {"running": True}
def status(model_id):
disabled_models = ["microsoft/trocr-base-printed", "microsoft/trocr-base-handwritten"]
if model_id in pipes.keys() and model_id not in disabled_models:
print(f"[ check {model_id} ] success")
return {"loaded": True}
else:
print(f"[ check {model_id} ] failed")
return {"loaded": False}
def models(model_id, data):
while "using" in pipes[model_id] and pipes[model_id]["using"]:
print(f"[ inference {model_id} ] waiting")
time.sleep(0.1)
pipes[model_id]["using"] = True
print(f"[ inference {model_id} ] start")
start = time.time()
pipe = pipes[model_id]["model"]
if "device" in pipes[model_id]:
try:
pipe.to(pipes[model_id]["device"])
except:
pipe.device = torch.device(pipes[model_id]["device"])
pipe.model.to(pipes[model_id]["device"])
result = None
try:
# text to video
if model_id == "damo-vilab/text-to-video-ms-1.7b":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# pipe.enable_model_cpu_offload()
prompt = data["text"]
video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames
file_name = str(uuid.uuid4())[:4]
video_path = export_to_video(video_frames, f"public/videos/{file_name}.mp4")
new_file_name = str(uuid.uuid4())[:4]
os.system(f"ffmpeg -i {video_path} -vcodec libx264 public/videos/{new_file_name}.mp4")
if os.path.exists(f"public/videos/{new_file_name}.mp4"):
result = {"path": f"/videos/{new_file_name}.mp4"}
else:
result = {"path": f"/videos/{file_name}.mp4"}
# controlnet
if model_id.startswith("lllyasviel/sd-controlnet-"):
pipe.controlnet.to('cpu')
pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"])
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
control_image = load_image(data["img_url"])
# generator = torch.manual_seed(66)
out_image: Image = pipe(data["text"], num_inference_steps=20, image=control_image).images[0]
file_name = str(uuid.uuid4())[:4]
out_image.save(f"public/images/{file_name}.png")
result = {"path": f"/images/{file_name}.png"}
if model_id.endswith("-control"):
image = load_image(data["img_url"])
if "scribble" in model_id:
control = pipe(image, scribble = True)
elif "canny" in model_id:
control = pipe(image, low_threshold=100, high_threshold=200)
else:
control = pipe(image)
file_name = str(uuid.uuid4())[:4]
control.save(f"public/images/{file_name}.png")
result = {"path": f"/images/{file_name}.png"}
# image to image
if model_id == "lambdalabs/sd-image-variations-diffusers":
im = load_image(data["img_url"])
file_name = str(uuid.uuid4())[:4]
with open(f"public/images/{file_name}.png", "wb") as f:
f.write(data)
tform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(
(224, 224),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=False,
),
transforms.Normalize(
[0.48145466, 0.4578275, 0.40821073],
[0.26862954, 0.26130258, 0.27577711]),
])
inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0)
out = pipe(inp, guidance_scale=3)
out["images"][0].save(f"public/images/{file_name}.jpg")
result = {"path": f"/images/{file_name}.jpg"}
# image to text
if model_id == "Salesforce/blip-image-captioning-large":
raw_image = load_image(data["img_url"]).convert('RGB')
text = data["text"]
inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"])
out = pipe.generate(**inputs)
caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True)
result = {"generated text": caption}
if model_id == "ydshieh/vit-gpt2-coco-en":
img_url = data["img_url"]
generated_text = pipe(img_url)[0]['generated_text']
result = {"generated text": generated_text}
if model_id == "nlpconnect/vit-gpt2-image-captioning":
image = load_image(data["img_url"]).convert("RGB")
pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(pipes[model_id]["device"])
generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1})
generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0]
result = {"generated text": generated_text}
# image to text: OCR
if model_id == "microsoft/trocr-base-printed" or model_id == "microsoft/trocr-base-handwritten":
image = load_image(data["img_url"]).convert("RGB")
pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(pipes[model_id]["device"])
generated_ids = pipe.generate(pixel_values)
generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0]
result = {"generated text": generated_text}
# text to image
if model_id == "runwayml/stable-diffusion-v1-5":
file_name = str(uuid.uuid4())[:4]
text = data["text"]
out = pipe(prompt=text)
out["images"][0].save(f"public/images/{file_name}.jpg")
result = {"path": f"/images/{file_name}.jpg"}
# object detection
if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101":
img_url = data["img_url"]
open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"]
result = pipe(img_url, candidate_labels=open_types)
# VQA
if model_id == "dandelin/vilt-b32-finetuned-vqa":
question = data["text"]
img_url = data["img_url"]
result = pipe(question=question, image=img_url)
#DQA
if model_id == "impira/layoutlm-document-qa":
question = data["text"]
img_url = data["img_url"]
result = pipe(img_url, question)
# depth-estimation
if model_id == "Intel/dpt-large":
output = pipe(data["img_url"])
image = output['depth']
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large":
image = load_image(data["img_url"])
inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt")
with torch.no_grad():
outputs = pipe(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
image = Image.fromarray(formatted)
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
# TTS
if model_id == "espnet/kan-bayashi_ljspeech_vits":
text = data["text"]
wav = pipe(text)["wav"]
name = str(uuid.uuid4())[:4]
sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16")
result = {"path": f"/audios/{name}.wav"}
if model_id == "microsoft/speecht5_tts":
text = data["text"]
inputs = pipes[model_id]["processor"](text=text, return_tensors="pt")
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"])
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
name = str(uuid.uuid4())[:4]
sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
result = {"path": f"/audios/{name}.wav"}
# ASR
if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr":
audio_url = data["audio_url"]
result = { "text": pipe(audio_url)["text"]}
# audio to audio
if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k":
audio_url = data["audio_url"]
wav, sr = torchaudio.load(audio_url)
with torch.no_grad():
result_wav = pipe(wav.to(pipes[model_id]["device"]))
name = str(uuid.uuid4())[:4]
sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr)
result = {"path": f"/audios/{name}.wav"}
if model_id == "microsoft/speecht5_vc":
audio_url = data["audio_url"]
wav, sr = torchaudio.load(audio_url)
inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt")
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
name = str(uuid.uuid4())[:4]
sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
result = {"path": f"/audios/{name}.wav"}
# segmentation
if model_id == "facebook/detr-resnet-50-panoptic":
result = []
segments = pipe(data["img_url"])
image = load_image(data["img_url"])
colors = []
for i in range(len(segments)):
colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50))
for segment in segments:
mask = segment["mask"]
mask = mask.convert('L')
layer = Image.new('RGBA', mask.size, colors[i])
image.paste(layer, (0, 0), mask)
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade":
image = load_image(data["img_url"])
inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"])
outputs = pipe(**inputs)
result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
predicted_panoptic_map = result["segmentation"].cpu().numpy()
predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8))
name = str(uuid.uuid4())[:4]
predicted_panoptic_map.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
except Exception as e:
print(e)
traceback.print_exc()
result = {"error": {"message": "Error when running the model inference."}}
if "device" in pipes[model_id]:
try:
pipe.to("cpu")
torch.cuda.empty_cache()
except:
pipe.device = torch.device("cpu")
pipe.model.to("cpu")
torch.cuda.empty_cache()
pipes[model_id]["using"] = False
if result is None:
result = {"error": {"message": "model not found"}}
end = time.time()
during = end - start
print(f"[ complete {model_id} ] {during}s")
print(f"[ result {model_id} ] {result}")
return result
|