Spaces:
Running
on
L4
Running
on
L4
tricktreat
commited on
Commit
·
f3e41d6
1
Parent(s):
e76e97a
state
Browse files- app.py +112 -94
- awesome_chat.py +23 -26
- config.gradio.yaml +2 -2
app.py
CHANGED
@@ -4,103 +4,109 @@ import re
|
|
4 |
from diffusers.utils import load_image
|
5 |
import requests
|
6 |
from awesome_chat import chat_huggingface
|
7 |
-
from awesome_chat import set_huggingface_token, get_huggingface_token
|
8 |
import os
|
9 |
|
10 |
-
all_messages = []
|
11 |
-
OPENAI_KEY = ""
|
12 |
-
|
13 |
os.makedirs("public/images", exist_ok=True)
|
14 |
os.makedirs("public/audios", exist_ok=True)
|
15 |
os.makedirs("public/videos", exist_ok=True)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
if
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
messages = messages + [(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
return messages
|
88 |
-
message = chat_huggingface(all_messages, OPENAI_KEY)["message"]
|
89 |
-
image_urls, audio_urls, video_urls = extract_medias(message)
|
90 |
-
add_message(message, "assistant")
|
91 |
-
messages[-1][1] = message
|
92 |
-
for image_url in image_urls:
|
93 |
-
image_url = image_url.replace("public/", "")
|
94 |
-
messages = messages + [((None, (f"public/{image_url}",)))]
|
95 |
-
for audio_url in audio_urls:
|
96 |
-
audio_url = audio_url.replace("public/", "")
|
97 |
-
messages = messages + [((None, (f"public/{audio_url}",)))]
|
98 |
-
for video_url in video_urls:
|
99 |
-
video_url = video_url.replace("public/", "")
|
100 |
-
messages = messages + [((None, (f"public/{video_url}",)))]
|
101 |
-
return messages
|
102 |
|
103 |
with gr.Blocks() as demo:
|
|
|
104 |
gr.Markdown("<h1><center>HuggingGPT</center></h1>")
|
105 |
gr.Markdown("<p align='center'><img src='https://i.ibb.co/qNH3Jym/logo.png' height='25' width='95'></p>")
|
106 |
gr.Markdown("<p align='center' style='font-size: 20px;'>A system to connect LLMs with ML community. See our <a href='https://github.com/microsoft/JARVIS'>Project</a> and <a href='http://arxiv.org/abs/2303.17580'>Paper</a>.</p>")
|
@@ -135,13 +141,25 @@ with gr.Blocks() as demo:
|
|
135 |
).style(container=False)
|
136 |
with gr.Column(scale=0.15, min_width=0):
|
137 |
btn2 = gr.Button("Send").style(full_height=True)
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
hugging_face_token.submit(set_token, [hugging_face_token], [hugging_face_token])
|
142 |
-
btn1.click(set_key, [openai_api_key], [openai_api_key])
|
143 |
-
btn2.click(add_text, [chatbot, txt], [chatbot, txt]).then(bot, chatbot, chatbot)
|
144 |
-
btn3.click(set_token, [hugging_face_token], [hugging_face_token])
|
145 |
|
146 |
gr.Examples(
|
147 |
examples=["Given a collection of image A: /examples/a.jpg, B: /examples/b.jpg, C: /examples/c.jpg, please tell me how many zebras in these picture?",
|
|
|
4 |
from diffusers.utils import load_image
|
5 |
import requests
|
6 |
from awesome_chat import chat_huggingface
|
|
|
7 |
import os
|
8 |
|
|
|
|
|
|
|
9 |
os.makedirs("public/images", exist_ok=True)
|
10 |
os.makedirs("public/audios", exist_ok=True)
|
11 |
os.makedirs("public/videos", exist_ok=True)
|
12 |
|
13 |
+
class Client:
|
14 |
+
def __init__(self) -> None:
|
15 |
+
self.OPENAI_KEY = ""
|
16 |
+
self.HUGGINGFACE_TOKEN = ""
|
17 |
+
self.all_messages = []
|
18 |
+
|
19 |
+
def set_key(self, openai_key):
|
20 |
+
self.OPENAI_KEY = openai_key
|
21 |
+
if len(self.HUGGINGFACE_TOKEN)>0:
|
22 |
+
gr.update(visible = True)
|
23 |
+
return self.OPENAI_KEY
|
24 |
+
|
25 |
+
def set_token(self, huggingface_token):
|
26 |
+
self.HUGGINGFACE_TOKEN = huggingface_token
|
27 |
+
if len(self.OPENAI_KEY)>0:
|
28 |
+
gr.update(visible = True)
|
29 |
+
return self.HUGGINGFACE_TOKEN
|
30 |
+
|
31 |
+
def add_message(self, content, role):
|
32 |
+
message = {"role":role, "content":content}
|
33 |
+
self.all_messages.append(message)
|
34 |
+
|
35 |
+
def extract_medias(self, message):
|
36 |
+
image_pattern = re.compile(r"(http(s?):|\/)?([\.\/_\w:-])*?\.(jpg|jpeg|tiff|gif|png)")
|
37 |
+
image_urls = []
|
38 |
+
for match in image_pattern.finditer(message):
|
39 |
+
if match.group(0) not in image_urls:
|
40 |
+
image_urls.append(match.group(0))
|
41 |
+
|
42 |
+
audio_pattern = re.compile(r"(http(s?):|\/)?([\.\/_\w:-])*?\.(flac|wav)")
|
43 |
+
audio_urls = []
|
44 |
+
for match in audio_pattern.finditer(message):
|
45 |
+
if match.group(0) not in audio_urls:
|
46 |
+
audio_urls.append(match.group(0))
|
47 |
+
|
48 |
+
video_pattern = re.compile(r"(http(s?):|\/)?([\.\/_\w:-])*?\.(mp4)")
|
49 |
+
video_urls = []
|
50 |
+
for match in video_pattern.finditer(message):
|
51 |
+
if match.group(0) not in video_urls:
|
52 |
+
video_urls.append(match.group(0))
|
53 |
+
|
54 |
+
return image_urls, audio_urls, video_urls
|
55 |
+
|
56 |
+
def add_text(self, messages, message):
|
57 |
+
if len(self.OPENAI_KEY) == 0 or not self.OPENAI_KEY.startswith("sk-") or len(self.HUGGINGFACE_TOKEN) == 0 or not self.HUGGINGFACE_TOKEN.startswith("hf_"):
|
58 |
+
return messages, "Please set your OpenAI API key or Hugging Face token first!!!"
|
59 |
+
self.add_message(message, "user")
|
60 |
+
messages = messages + [(message, None)]
|
61 |
+
image_urls, audio_urls, video_urls = self.extract_medias(message)
|
62 |
+
|
63 |
+
for image_url in image_urls:
|
64 |
+
if not image_url.startswith("http") and not image_url.startswith("public"):
|
65 |
+
image_url = "public/" + image_url
|
66 |
+
image = load_image(image_url)
|
67 |
+
name = f"public/images/{str(uuid.uuid4())[:4]}.jpg"
|
68 |
+
image.save(name)
|
69 |
+
messages = messages + [((f"{name}",), None)]
|
70 |
+
for audio_url in audio_urls and not audio_url.startswith("public"):
|
71 |
+
if not audio_url.startswith("http"):
|
72 |
+
audio_url = "public/" + audio_url
|
73 |
+
ext = audio_url.split(".")[-1]
|
74 |
+
name = f"public/audios/{str(uuid.uuid4()[:4])}.{ext}"
|
75 |
+
response = requests.get(audio_url)
|
76 |
+
with open(name, "wb") as f:
|
77 |
+
f.write(response.content)
|
78 |
+
messages = messages + [((f"{name}",), None)]
|
79 |
+
for video_url in video_urls and not video_url.startswith("public"):
|
80 |
+
if not video_url.startswith("http"):
|
81 |
+
video_url = "public/" + video_url
|
82 |
+
ext = video_url.split(".")[-1]
|
83 |
+
name = f"public/audios/{str(uuid.uuid4()[:4])}.{ext}"
|
84 |
+
response = requests.get(video_url)
|
85 |
+
with open(name, "wb") as f:
|
86 |
+
f.write(response.content)
|
87 |
+
messages = messages + [((f"{name}",), None)]
|
88 |
+
return messages, ""
|
89 |
+
|
90 |
+
def bot(self, messages):
|
91 |
+
if len(self.OPENAI_KEY) == 0 or not self.OPENAI_KEY.startswith("sk-") or len(self.HUGGINGFACE_TOKEN) == 0 or not self.HUGGINGFACE_TOKEN.startswith("hf_"):
|
92 |
+
return messages
|
93 |
+
message = chat_huggingface(self.all_messages, self.OPENAI_KEY, self.HUGGINGFACE_TOKEN)["message"]
|
94 |
+
image_urls, audio_urls, video_urls = self.extract_medias(message)
|
95 |
+
self.add_message(message, "assistant")
|
96 |
+
messages[-1][1] = message
|
97 |
+
for image_url in image_urls:
|
98 |
+
image_url = image_url.replace("public/", "")
|
99 |
+
messages = messages + [((None, (f"public/{image_url}",)))]
|
100 |
+
for audio_url in audio_urls:
|
101 |
+
audio_url = audio_url.replace("public/", "")
|
102 |
+
messages = messages + [((None, (f"public/{audio_url}",)))]
|
103 |
+
for video_url in video_urls:
|
104 |
+
video_url = video_url.replace("public/", "")
|
105 |
+
messages = messages + [((None, (f"public/{video_url}",)))]
|
106 |
return messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
with gr.Blocks() as demo:
|
109 |
+
state = gr.State(value={"client": Client()})
|
110 |
gr.Markdown("<h1><center>HuggingGPT</center></h1>")
|
111 |
gr.Markdown("<p align='center'><img src='https://i.ibb.co/qNH3Jym/logo.png' height='25' width='95'></p>")
|
112 |
gr.Markdown("<p align='center' style='font-size: 20px;'>A system to connect LLMs with ML community. See our <a href='https://github.com/microsoft/JARVIS'>Project</a> and <a href='http://arxiv.org/abs/2303.17580'>Paper</a>.</p>")
|
|
|
141 |
).style(container=False)
|
142 |
with gr.Column(scale=0.15, min_width=0):
|
143 |
btn2 = gr.Button("Send").style(full_height=True)
|
144 |
+
|
145 |
+
def set_key(state, openai_api_key):
|
146 |
+
return state["client"].set_key(openai_api_key)
|
147 |
+
|
148 |
+
def add_text(state, chatbot, txt):
|
149 |
+
return state["client"].add_text(chatbot, txt)
|
150 |
+
|
151 |
+
def set_token(state, hugging_face_token):
|
152 |
+
return state["client"].set_token(hugging_face_token)
|
153 |
+
|
154 |
+
def bot(state, chatbot):
|
155 |
+
return state["client"].bot(chatbot)
|
156 |
+
|
157 |
+
openai_api_key.submit(set_key, [state, openai_api_key], [openai_api_key])
|
158 |
+
txt.submit(add_text, [state, chatbot, txt], [chatbot, txt]).then(bot, [state, chatbot], chatbot)
|
159 |
hugging_face_token.submit(set_token, [hugging_face_token], [hugging_face_token])
|
160 |
+
btn1.click(set_key, [state, openai_api_key], [openai_api_key])
|
161 |
+
btn2.click(add_text, [state, chatbot, txt], [chatbot, txt]).then(bot, [state, chatbot], chatbot)
|
162 |
+
btn3.click(set_token, [state, hugging_face_token], [hugging_face_token])
|
163 |
|
164 |
gr.Examples(
|
165 |
examples=["Given a collection of image A: /examples/a.jpg, B: /examples/b.jpg, C: /examples/c.jpg, please tell me how many zebras in these picture?",
|
awesome_chat.py
CHANGED
@@ -119,15 +119,6 @@ METADATAS = {}
|
|
119 |
for model in MODELS:
|
120 |
METADATAS[model["id"]] = model
|
121 |
|
122 |
-
HUGGINGFACE_TOKEN = ""
|
123 |
-
|
124 |
-
def set_huggingface_token(token):
|
125 |
-
global HUGGINGFACE_TOKEN
|
126 |
-
HUGGINGFACE_TOKEN = token
|
127 |
-
|
128 |
-
def get_huggingface_token():
|
129 |
-
return HUGGINGFACE_TOKEN
|
130 |
-
|
131 |
def convert_chat_to_completion(data):
|
132 |
messages = data.pop('messages', [])
|
133 |
tprompt = ""
|
@@ -343,12 +334,15 @@ def response_results(input, results, openaikey=None):
|
|
343 |
}
|
344 |
return send_request(data)
|
345 |
|
346 |
-
def huggingface_model_inference(model_id, data, task):
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
349 |
}
|
350 |
task_url = f"https://api-inference.huggingface.co/models/{model_id}" # InferenceApi does not yet support some tasks
|
351 |
-
inference = InferenceApi(repo_id=model_id, token=
|
352 |
|
353 |
# NLP tasks
|
354 |
if task == "question-answering":
|
@@ -573,10 +567,13 @@ def local_model_inference(model_id, data, task):
|
|
573 |
return results
|
574 |
|
575 |
|
576 |
-
def model_inference(model_id, data, hosted_on, task):
|
577 |
-
|
578 |
-
|
579 |
-
|
|
|
|
|
|
|
580 |
if hosted_on == "unknown":
|
581 |
r = status(model_id)
|
582 |
logger.debug("Local Server Status: " + str(r.json()))
|
@@ -592,7 +589,7 @@ def model_inference(model_id, data, hosted_on, task):
|
|
592 |
if hosted_on == "local":
|
593 |
inference_result = local_model_inference(model_id, data, task)
|
594 |
elif hosted_on == "huggingface":
|
595 |
-
inference_result = huggingface_model_inference(model_id, data, task)
|
596 |
except Exception as e:
|
597 |
print(e)
|
598 |
traceback.print_exc()
|
@@ -615,12 +612,12 @@ def get_model_status(model_id, url, headers, queue = None):
|
|
615 |
queue.put((model_id, False, None))
|
616 |
return False
|
617 |
|
618 |
-
def get_avaliable_models(candidates, topk=10):
|
619 |
all_available_models = {"local": [], "huggingface": []}
|
620 |
threads = []
|
621 |
result_queue = Queue()
|
622 |
HUGGINGFACE_HEADERS = {
|
623 |
-
"Authorization": f"Bearer {
|
624 |
}
|
625 |
for candidate in candidates:
|
626 |
model_id = candidate["id"]
|
@@ -658,7 +655,7 @@ def collect_result(command, choose, inference_result):
|
|
658 |
return result
|
659 |
|
660 |
|
661 |
-
def run_task(input, command, results, openaikey = None):
|
662 |
id = command["id"]
|
663 |
args = command["args"]
|
664 |
task = command["task"]
|
@@ -769,11 +766,11 @@ def run_task(input, command, results, openaikey = None):
|
|
769 |
logger.warning(f"no available models on {task} task.")
|
770 |
record_case(success=False, **{"input": input, "task": command, "reason": f"task not support: {command['task']}", "op":"message"})
|
771 |
inference_result = {"error": f"{command['task']} not found in available tasks."}
|
772 |
-
results[id] = collect_result(command,
|
773 |
return False
|
774 |
|
775 |
candidates = MODELS_MAP[task][:20]
|
776 |
-
all_avaliable_models = get_avaliable_models(candidates, config["num_candidate_models"])
|
777 |
all_avaliable_model_ids = all_avaliable_models["local"] + all_avaliable_models["huggingface"]
|
778 |
logger.debug(f"avaliable models on {command['task']}: {all_avaliable_models}")
|
779 |
|
@@ -818,7 +815,7 @@ def run_task(input, command, results, openaikey = None):
|
|
818 |
choose_str = find_json(choose_str)
|
819 |
best_model_id, reason, choose = get_id_reason(choose_str)
|
820 |
hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface"
|
821 |
-
inference_result = model_inference(best_model_id, args, hosted_on, command['task'])
|
822 |
|
823 |
if "error" in inference_result:
|
824 |
logger.warning(f"Inference error: {inference_result['error']}")
|
@@ -829,7 +826,7 @@ def run_task(input, command, results, openaikey = None):
|
|
829 |
results[id] = collect_result(command, choose, inference_result)
|
830 |
return True
|
831 |
|
832 |
-
def chat_huggingface(messages, openaikey = None, return_planning = False, return_results = False):
|
833 |
start = time.time()
|
834 |
context = messages[:-1]
|
835 |
input = messages[-1]["content"]
|
@@ -871,7 +868,7 @@ def chat_huggingface(messages, openaikey = None, return_planning = False, return
|
|
871 |
# logger.debug(f"d.keys(): {d.keys()}, dep: {dep}")
|
872 |
if len(list(set(dep).intersection(d.keys()))) == len(dep) or dep[0] == -1:
|
873 |
tasks.remove(task)
|
874 |
-
thread = threading.Thread(target=run_task, args=(input, task, d, openaikey))
|
875 |
thread.start()
|
876 |
threads.append(thread)
|
877 |
if num_threads == len(threads):
|
|
|
119 |
for model in MODELS:
|
120 |
METADATAS[model["id"]] = model
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
def convert_chat_to_completion(data):
|
123 |
messages = data.pop('messages', [])
|
124 |
tprompt = ""
|
|
|
334 |
}
|
335 |
return send_request(data)
|
336 |
|
337 |
+
def huggingface_model_inference(model_id, data, task, huggingfacetoken=None):
|
338 |
+
if huggingfacetoken is None:
|
339 |
+
HUGGINGFACE_HEADERS = {}
|
340 |
+
else:
|
341 |
+
HUGGINGFACE_HEADERS = {
|
342 |
+
"Authorization": f"Bearer {huggingfacetoken}",
|
343 |
}
|
344 |
task_url = f"https://api-inference.huggingface.co/models/{model_id}" # InferenceApi does not yet support some tasks
|
345 |
+
inference = InferenceApi(repo_id=model_id, token=huggingfacetoken)
|
346 |
|
347 |
# NLP tasks
|
348 |
if task == "question-answering":
|
|
|
567 |
return results
|
568 |
|
569 |
|
570 |
+
def model_inference(model_id, data, hosted_on, task, huggingfacetoken=None):
|
571 |
+
if huggingfacetoken:
|
572 |
+
HUGGINGFACE_HEADERS = {
|
573 |
+
"Authorization": f"Bearer {huggingfacetoken}",
|
574 |
+
}
|
575 |
+
else:
|
576 |
+
HUGGINGFACE_HEADERS = None
|
577 |
if hosted_on == "unknown":
|
578 |
r = status(model_id)
|
579 |
logger.debug("Local Server Status: " + str(r.json()))
|
|
|
589 |
if hosted_on == "local":
|
590 |
inference_result = local_model_inference(model_id, data, task)
|
591 |
elif hosted_on == "huggingface":
|
592 |
+
inference_result = huggingface_model_inference(model_id, data, task, huggingfacetoken)
|
593 |
except Exception as e:
|
594 |
print(e)
|
595 |
traceback.print_exc()
|
|
|
612 |
queue.put((model_id, False, None))
|
613 |
return False
|
614 |
|
615 |
+
def get_avaliable_models(candidates, topk=10, huggingfacetoken = None):
|
616 |
all_available_models = {"local": [], "huggingface": []}
|
617 |
threads = []
|
618 |
result_queue = Queue()
|
619 |
HUGGINGFACE_HEADERS = {
|
620 |
+
"Authorization": f"Bearer {huggingfacetoken}",
|
621 |
}
|
622 |
for candidate in candidates:
|
623 |
model_id = candidate["id"]
|
|
|
655 |
return result
|
656 |
|
657 |
|
658 |
+
def run_task(input, command, results, openaikey = None, huggingfacetoken = None):
|
659 |
id = command["id"]
|
660 |
args = command["args"]
|
661 |
task = command["task"]
|
|
|
766 |
logger.warning(f"no available models on {task} task.")
|
767 |
record_case(success=False, **{"input": input, "task": command, "reason": f"task not support: {command['task']}", "op":"message"})
|
768 |
inference_result = {"error": f"{command['task']} not found in available tasks."}
|
769 |
+
results[id] = collect_result(command, "", inference_result)
|
770 |
return False
|
771 |
|
772 |
candidates = MODELS_MAP[task][:20]
|
773 |
+
all_avaliable_models = get_avaliable_models(candidates, config["num_candidate_models"], huggingfacetoken)
|
774 |
all_avaliable_model_ids = all_avaliable_models["local"] + all_avaliable_models["huggingface"]
|
775 |
logger.debug(f"avaliable models on {command['task']}: {all_avaliable_models}")
|
776 |
|
|
|
815 |
choose_str = find_json(choose_str)
|
816 |
best_model_id, reason, choose = get_id_reason(choose_str)
|
817 |
hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface"
|
818 |
+
inference_result = model_inference(best_model_id, args, hosted_on, command['task'], huggingfacetoken)
|
819 |
|
820 |
if "error" in inference_result:
|
821 |
logger.warning(f"Inference error: {inference_result['error']}")
|
|
|
826 |
results[id] = collect_result(command, choose, inference_result)
|
827 |
return True
|
828 |
|
829 |
+
def chat_huggingface(messages, openaikey = None, huggingfacetoken = None, return_planning = False, return_results = False):
|
830 |
start = time.time()
|
831 |
context = messages[:-1]
|
832 |
input = messages[-1]["content"]
|
|
|
868 |
# logger.debug(f"d.keys(): {d.keys()}, dep: {dep}")
|
869 |
if len(list(set(dep).intersection(d.keys()))) == len(dep) or dep[0] == -1:
|
870 |
tasks.remove(task)
|
871 |
+
thread = threading.Thread(target=run_task, args=(input, task, d, openaikey, huggingfacetoken))
|
872 |
thread.start()
|
873 |
threads.append(thread)
|
874 |
if num_threads == len(threads):
|
config.gradio.yaml
CHANGED
@@ -3,7 +3,7 @@ openai:
|
|
3 |
huggingface:
|
4 |
token: # required: huggingface token @ https://huggingface.co/settings/tokens
|
5 |
dev: false
|
6 |
-
debug:
|
7 |
log_file: logs/debug.log
|
8 |
model: text-davinci-003 # text-davinci-003
|
9 |
use_completion: true
|
@@ -13,7 +13,7 @@ num_candidate_models: 5
|
|
13 |
max_description_length: 100
|
14 |
proxy:
|
15 |
logit_bias:
|
16 |
-
parse_task: 0.
|
17 |
choose_model: 5
|
18 |
tprompt:
|
19 |
parse_task: >-
|
|
|
3 |
huggingface:
|
4 |
token: # required: huggingface token @ https://huggingface.co/settings/tokens
|
5 |
dev: false
|
6 |
+
debug: true
|
7 |
log_file: logs/debug.log
|
8 |
model: text-davinci-003 # text-davinci-003
|
9 |
use_completion: true
|
|
|
13 |
max_description_length: 100
|
14 |
proxy:
|
15 |
logit_bias:
|
16 |
+
parse_task: 0.5
|
17 |
choose_model: 5
|
18 |
tprompt:
|
19 |
parse_task: >-
|