Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
import os, json | |
from src.envs import API | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
import jsonlines | |
# Initialize an empty list to store the JSON objects | |
json_list = [] | |
# Open the JSONL file | |
with jsonlines.open('commit_results.jsonl') as reader: | |
for obj in reader: | |
# Append each JSON object to the list | |
json_list.append(obj) | |
# _test_data = pd.DataFrame({"Score": [54,46,53], "Name": ["MageBench", "MageBench", "MageBench"], "BaseModel": ["GPT-4o", "GPT-4o", "LLaMA"], "Env.": ["Sokoban", "Sokoban", "Football"], | |
# "Target-research": ["Model-Eval-Global", "Model-Eval-Online", "Agent-Eval-Prompt"], "Subset": ["mini", "all", "mini"], "Link": ["xxx", "xxx", "xxx"]}) | |
json_list = sorted(json_list, key=lambda x: x['Score'], reverse=True) | |
committed = pd.DataFrame(json_list) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, #dataframe, | |
select_columns=SelectColumns( | |
default_selection=["Score", "Name", "BaseModel", "Env.", "Target-research", "Subset", "Link"], | |
cant_deselect=["Score", "Name",], | |
label="Select Columns to Display:", | |
), | |
search_columns=SearchColumns(primary_column="Name", secondary_columns=["BaseModel", "Target-research"], | |
placeholder="Search by work name or basemodel. To search by country, type 'basemodel:<query>'", | |
label="Search"), | |
filter_columns=[ | |
ColumnFilter("Target-research", type="checkboxgroup", label="Comparison settings for target researches (Single Selection)"), | |
# ColumnFilter("BaseModel", type="dropdown", label="Select The base lmm model that fultill the task."), | |
ColumnFilter("Env.", type="checkboxgroup", label="Environment (Single Selection)"), | |
ColumnFilter("Subset", type="checkboxgroup", label="Subset (Single Selection)"), | |
ColumnFilter("State", type="checkboxgroup", label="Result state (checked or under-review)"), | |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
# ColumnFilter( | |
# AutoEvalColumn.params.name, | |
# type="slider", | |
# min=0.01, | |
# max=150, | |
# label="Select the number of parameters (B)", | |
# ), | |
# ColumnFilter( | |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
# ), | |
], | |
interactive=False, | |
) | |
all_submissions = [] | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Video('demo.mp4', elem_id="video-player", label="Introduction Video") | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard = init_leaderboard(committed) # LEADERBOARD_DF | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Row(): | |
score_input = gr.Textbox(label="Score (float)", placeholder="请输入分数") | |
name_input = gr.Textbox(label="Name (str)", placeholder="请输入名称") | |
base_model_input = gr.Textbox(label="BaseModel (str)", placeholder="请输入基模型名称") | |
with gr.Row(): | |
env_dropdown = gr.Dropdown( | |
choices=["Sokoban", "Football", "WebUI"], | |
label="Env.", | |
value="Sokoban" | |
) | |
target_research_dropdown = gr.Dropdown( | |
choices=["Model-Eval-Online", "Model-Eval-Global", "Agent-Eval-Prompt", "Agent-Eval-Finetune"], | |
label="Target-research", | |
value="Model-Eval-Online" | |
) | |
subset_dropdown = gr.Dropdown( | |
choices=["mini", "all"], | |
label="Subset", | |
value="mini" | |
) | |
link_input = gr.Textbox(label="Link (str)", placeholder="请输入链接") | |
submit_button = gr.Button("Upload One Eval") | |
with gr.Row(): | |
clear_button = gr.Button("Clear Uploads") | |
submit_all_button = gr.Button("Submit All") | |
submission_result = gr.Markdown("## Uploaded results") | |
def submit_eval(score, name, base_model, env, target_research, subset, link): | |
# 处理单条数据提交 | |
result = { | |
"Score": float(score), | |
"Name": name, | |
"BaseModel": base_model, | |
"Env.": env, | |
"Target-research": target_research, | |
"Subset": subset, | |
"Link": link, | |
"State": "Checking" | |
} | |
# 将结果添加到全局变量中 | |
global all_submissions | |
all_submissions.append(result) | |
# 更新页面展示 | |
display_text = "\n".join([json.dumps(submission) for submission in all_submissions]) | |
return gr.Markdown("## Uploaded results\n\n```json\n"+display_text+"\n```") | |
def submit_all(): | |
json_list = [] | |
with jsonlines.open('commit_results.jsonl') as reader: | |
for obj in reader: | |
json_list.append(obj) | |
global all_submissions | |
if len(all_submissions)>0: | |
json_list.extend(all_submissions) | |
tmp_path = "tmp-output.json" | |
with jsonlines.open(tmp_path, mode='w') as writer: | |
writer.write_all(json_list) | |
print("Uploading eval file") | |
API.upload_file( | |
path_or_fileobj=tmp_path, | |
path_in_repo='commit_results.jsonl', | |
repo_id="microsoft/MageBench-Leaderboard", | |
repo_type="space", | |
commit_message=f"Add submissions to checking queue", | |
) | |
all_submissions = [] | |
return gr.Markdown("## All submissions uploaded successfully! \nThis will re-start the space...") | |
else: | |
return gr.Markdown("Please click Upload One Eval to upload some results before you submit.") | |
def clear(): | |
global all_submissions | |
all_submissions = [] | |
return gr.Markdown("## Uploaded results") | |
# 单条数据提交按钮点击事件 | |
submit_button.click( | |
submit_eval, | |
[score_input, name_input, base_model_input, env_dropdown, target_research_dropdown, subset_dropdown, link_input], | |
submission_result | |
) | |
# 所有数据提交按钮点击事件 | |
submit_all_button.click( | |
submit_all, | |
inputs=[], | |
outputs=submission_result | |
) | |
clear_button.click( | |
clear, | |
[], | |
submission_result | |
) | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |