anton-l HF staff commited on
Commit
6999303
·
1 Parent(s): 7748260
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -1,12 +1,20 @@
1
  import os
2
- os.system("pip install gradio==2.8.0b2")
3
  import gradio as gr
4
  import torch
5
- from torchaudio.sox_effects import apply_effects_file
 
 
 
6
  from transformers import AutoFeatureExtractor, AutoModelForAudioXVector
7
 
8
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
 
 
 
 
 
 
 
10
  STYLE = """
11
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
12
  """
@@ -55,9 +63,12 @@ cosine_sim = torch.nn.CosineSimilarity(dim=-1)
55
  def similarity_fn(path1, path2):
56
  if not (path1 and path2):
57
  return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
58
-
59
- wav1, _ = apply_effects_file(path1, EFFECTS)
60
- wav2, _ = apply_effects_file(path2, EFFECTS)
 
 
 
61
  print(wav1.shape, wav2.shape)
62
 
63
  input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
@@ -127,4 +138,4 @@ interface = gr.Interface(
127
  live=False,
128
  examples=examples,
129
  )
130
- interface.launch(enable_queue=True)
 
1
  import os
 
2
  import gradio as gr
3
  import torch
4
+ import pydub
5
+ import torchaudio
6
+ from torchaudio.sox_effects import apply_effects_tensor
7
+ import numpy as np
8
  from transformers import AutoFeatureExtractor, AutoModelForAudioXVector
9
 
10
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
 
12
+ def load_audio(file_name):
13
+ audio = pydub.AudioSegment.from_file(file_name)
14
+ arr = np.array(audio.get_array_of_samples(), dtype=np.float32)
15
+ arr = arr / (1 << (8 * audio.sample_width - 1))
16
+ return arr.astype(np.float32), audio.frame_rate
17
+
18
  STYLE = """
19
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
20
  """
 
63
  def similarity_fn(path1, path2):
64
  if not (path1 and path2):
65
  return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
66
+
67
+ wav1, sr1 = load_audio(path1)
68
+ print(wav1, wav1.shape, wav1.dtype)
69
+ wav1, _ = apply_effects_tensor(torch.tensor(wav1).unsqueeze(0), sr1, EFFECTS)
70
+ wav2, sr2 = load_audio(path2)
71
+ wav2, _ = apply_effects_tensor(torch.tensor(wav2).unsqueeze(0), sr2, EFFECTS)
72
  print(wav1.shape, wav2.shape)
73
 
74
  input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
 
138
  live=False,
139
  examples=examples,
140
  )
141
+ interface.launch(enable_queue=True)