Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import cv2 | |
from transformers import SamModel, SamProcessor | |
import gradio as gr | |
# Load the SAM model and processor from Hugging Face | |
model_id = "facebook/sam-vit-huge" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
sam = SamModel.from_pretrained(model_id).to(device) | |
processor = SamProcessor.from_pretrained(model_id) | |
def segment_rocks(image): | |
# Preprocess the image | |
inputs = processor(image, return_tensors="pt").to(device) | |
# Generate image embeddings | |
with torch.no_grad(): | |
image_embeddings = sam.get_image_embeddings(inputs["pixel_values"]) | |
# Generate masks | |
masks = [] | |
for i in range(3): # Generate multiple masks | |
inputs = processor( | |
image, | |
input_points=None, | |
return_tensors="pt", | |
input_boxes=[[[0, 0, image.shape[1], image.shape[0]]]], | |
).to(device) | |
with torch.no_grad(): | |
outputs = sam( | |
input_points=inputs["input_points"], | |
input_boxes=inputs["input_boxes"], | |
image_embeddings=image_embeddings, | |
multimask_output=True, | |
) | |
masks.extend(outputs.pred_masks.squeeze().cpu().numpy()) | |
return masks | |
def compute_rock_properties(mask): | |
# Find contours of the mask | |
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
properties = [] | |
for contour in contours: | |
# Compute area | |
area = cv2.contourArea(contour) | |
# Compute perimeter | |
perimeter = cv2.arcLength(contour, True) | |
# Compute circularity | |
circularity = 4 * np.pi * area / (perimeter ** 2) if perimeter > 0 else 0 | |
# Fit an ellipse to get major and minor axes | |
if len(contour) >= 5: | |
ellipse = cv2.fitEllipse(contour) | |
major_axis = max(ellipse[1]) | |
minor_axis = min(ellipse[1]) | |
aspect_ratio = major_axis / minor_axis if minor_axis > 0 else 0 | |
else: | |
major_axis = minor_axis = aspect_ratio = 0 | |
properties.append({ | |
'area': area, | |
'perimeter': perimeter, | |
'circularity': circularity, | |
'major_axis': major_axis, | |
'minor_axis': minor_axis, | |
'aspect_ratio': aspect_ratio | |
}) | |
return properties | |
def process_image(input_image): | |
# Convert to RGB if needed | |
if input_image.shape[2] == 4: # RGBA | |
input_image = cv2.cvtColor(input_image, cv2.COLOR_RGBA2RGB) | |
elif len(input_image.shape) == 2: # Grayscale | |
input_image = cv2.cvtColor(input_image, cv2.COLOR_GRAY2RGB) | |
masks = segment_rocks(input_image) | |
results = [] | |
for i, mask in enumerate(masks): | |
properties = compute_rock_properties(mask) | |
# Visualize the segmentation | |
masked_image = input_image.copy() | |
masked_image[mask] = (masked_image[mask] * 0.7 + np.array([255, 0, 0]) * 0.3).astype(np.uint8) | |
results.append((masked_image, f"Rock {i+1} properties: {properties}")) | |
return results | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="numpy"), | |
outputs=[gr.Image(type="numpy"), gr.Textbox(label="Properties")] * 3, | |
title="Rock Segmentation using SAM", | |
description="Upload an image to segment rocks and compute their properties." | |
) | |
# Launch the interface | |
iface.launch() |