mindexplorer commited on
Commit
c5df46f
·
verified ·
1 Parent(s): 36cea39

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -10,3 +10,48 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
+ ## One-Step Respiratory Disease Classifier using Digital Stethoscope Sound - Readme
15
+
16
+ This project provides a user-friendly Streamlit application to classify respiratory diseases using audio data from a digital stethoscope.
17
+
18
+ **Features:**
19
+
20
+ - Uploads a digital stethoscope audio file (WAV or MP3 format).
21
+ - Extracts features from the audio using a pre-trained Audio Set Transfer (AST) model.
22
+ - Predicts the most likely respiratory disease based on the extracted features using a deep learning model.
23
+ - Displays informative messages and relevant images based on the prediction.
24
+
25
+ **Requirements:**
26
+
27
+ - Python 3.x
28
+ - Streamlit (`pip install streamlit`)
29
+ - TensorFlow (`pip install tensorflow`)
30
+ - PyTorch (`pip install torch`)
31
+ - torchaudio (`pip install torchaudio`)
32
+ - transformers (`pip install transformers`)
33
+ - Pillow (`pip install Pillow`)
34
+
35
+ **Instructions:**
36
+
37
+ 1. Download the pre-trained AST model or Import it From the Hugging Face Website and disease classification model:
38
+ - Download the AST model files (e.g., `pytorch_model.bin`) from [https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) (replace with the actual download URL). Place them in a directory.
39
+ - Download the disease classification model (`Model.h5`) and place it in the same directory as the AST model files.
40
+ 2. Update file paths in the code:
41
+ - Unzip the Assets zip file
42
+ - Modify the following paths to reflect your actual locations:
43
+ - `'C:\\Users\\UserName\\Desktop\\RESPIRATORY DISEASE CLASSIFIER\\Model.h5'` (path to your disease classification model)
44
+ - `'C:\\Users\\UserName\\Desktop\\RESPIRATORY DISEASE CLASSIFIER\\Assets\\Healthy.gif'` (path to the healthy image)
45
+ - `'C:\\Users\\UserName\\Desktop\\RESPIRATORY-DISORDERS-.jpg'` (path to the generic respiratory issues image)
46
+ - `'C:\\Users\\UserName\\Desktop\\RESPIRATORY DISEASE CLASSIFIER\\Assets\\COPD.png'` (path to the COPD info image )
47
+ 3. Run the application:
48
+ - Open a terminal and navigate to the directory containing the script (`APP.py`).
49
+ - Run the script using `streamlit run APP.py`.
50
+ 4. Use the application:
51
+ - Upload an audio file from your digital stethoscope.
52
+ - The application will display the predicted disease, relevant information, and images.
53
+ - For COPD prediction, an additional information button can be clicked to display a detailed explanation.
54
+
55
+ **Disclaimer:**
56
+
57
+ This application is for informational purposes only and should not be used for medical diagnosis. Always consult a qualified healthcare professional for any health concerns.