File size: 32,944 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
import copy
import os
import pickle as pkl
from typing import Optional, Union, List

import numpy as np
import torch
import torch.nn as nn
import json
from torch.utils.data import ConcatDataset, Dataset, WeightedRandomSampler
from .builder import DATASETS
from .pipelines import Compose, RetargetSkeleton
import random
import pytorch3d.transforms as geometry
from scipy.ndimage import gaussian_filter
# from mogen.core.evaluation import build_evaluator
# from mogen.core.evaluation.utils import compute_similarity_transform, transform_pose_sequence
from mogen.models.builder import build_submodule
from .utils import copy_repr_data, extract_repr_data, move_repr_data, recover_from_ric

class SingleMotionVerseDataset(Dataset):
    """
    A dataset class for handling single MotionVerse datasets.

    Args:
        dataset_name (str): Name of the dataset and task to load.
        data_prefix (str): Path to the directory containing the dataset.
        ann_file (str): Path to the annotation file.
        pipeline (list): A list of transformations to apply on the data.
        mode (str): the mode of current work. Choices: ['pretrain', 'train', 'test'].
        eval_cfg (dict): Configuration for evaluation metrics.
    """

    def __init__(self,
                 dataset_path: Optional[str] = None,
                 task_name: Optional[str] = None,
                 data_prefix: Optional[str] = None,
                 ann_file: Optional[str] = None,
                 pipeline: Optional[List[dict]] = None,
                 
                 # for text2motion and speech2gesture
                 tgt_min_motion_length: int = 20,
                 tgt_max_motion_length: int = 200,
                 
                 # for video2motion
                 v2m_window_size: int = 20,
                 
                 # for motion prediction
                 mp_input_length: int = 50,
                 mp_output_length: int = 25,
                 mp_stride_step: int = 5,
                 
                 # for general test
                 test_rotation_type: str = 'h3d_rot',
                 target_framerate: float = 20,
                 eval_cfg: Optional[dict] = None,
                 test_mode: Optional[bool] = False):
        data_prefix = os.path.join(data_prefix, 'datasets', dataset_path)
        self.dataset_path = dataset_path
        assert task_name in ['mocap', 't2m', 'v2m', 's2g', 'm2d']
        self.task_name = task_name
        self.dataset_name = dataset_path + '_' + task_name

        # define subdirectories
        self.meta_dir = os.path.join(data_prefix, 'metas')
        self.motion_dir = os.path.join(data_prefix, 'motions')
        self.eval_motion_dir = os.path.join(data_prefix, 'eval_motions')
        self.text_dir = os.path.join(data_prefix, 'texts')
        self.text_feat_dir = os.path.join(data_prefix, 'text_feats')
        self.speech_dir = os.path.join(data_prefix, 'speeches')
        self.speech_feat_dir = os.path.join(data_prefix, 'speech_feats')
        self.music_dir = os.path.join(data_prefix, 'musics')
        self.music_feat_dir = os.path.join(data_prefix, 'music_feats')
        self.video_feat_dir = os.path.join(data_prefix, 'video_feats')
        self.anno_file = os.path.join(data_prefix, 'splits', ann_file)

        self.pipeline = Compose(pipeline)

        self.tgt_min_motion_length = tgt_min_motion_length
        self.tgt_max_motion_length = tgt_max_motion_length
        
        self.v2m_window_size = v2m_window_size
        
        self.mp_input_length = mp_input_length
        self.mp_output_length = mp_output_length
        self.mp_stride_step = mp_stride_step
        
        self.target_framerate = target_framerate
        self.test_rotation_type = test_rotation_type
        self.test_mode = test_mode
        self.load_annotations()
        self.eval_cfg = copy.deepcopy(eval_cfg)
        if self.test_mode:
            self.prepare_evaluation()

    def __len__(self) -> int:
        """Return the length of the current dataset."""
        if self.test_mode:
            return len(self.eval_indexes)
        return len(self.name_list)

    def __getitem__(self, idx: int) -> dict:
        """Prepare data for the given index."""
        if self.test_mode:
            idx = self.eval_indexes[idx]
        return self.prepare_data(idx)
    
    def load_annotations(self):
        if self.task_name == 'mocap':
            self.load_annotations_mocap()
        elif self.task_name == 't2m':
            self.load_annotations_t2m()
        elif self.task_name == 'v2m':
            self.load_annotations_v2m()
        elif self.task_name == 's2g':
            self.load_annotations_s2g()
        elif self.task_name == 'm2d':
            self.load_annotations_m2d()
        else:
            raise NotImplementedError()
    
    def load_annotations_mocap(self):
        if self.test_mode:
            self.name_list = []
            self.src_start_frame = []
            self.src_end_frame = []
            self.tgt_start_frame = []
            self.tgt_end_frame = []
            tgt_motion_length = self.mp_input_length + self.mp_output_length
            for name in open(self.anno_file):
                name = name.strip()
                meta_path = os.path.join(self.meta_dir, name + ".json")
                meta_data = json.load(open(meta_path))
                num_frames = meta_data['num_frames']
                downrate = int(meta_data['framerate'] / self.target_framerate + 0.1)
                if num_frames < (self.mp_input_length + self.mp_output_length) * downrate:
                    continue
                lim = num_frames // downrate - tgt_motion_length
                for start_frame in range(0, lim, self.mp_stride_step):
                    self.name_list.append(name)
                    self.src_start_frame.append((start_frame + 1) * downrate)
                    self.src_end_frame.append((start_frame + tgt_motion_length + 1) * downrate)
                    self.tgt_start_frame.append(start_frame + self.mp_input_length)
                    self.tgt_end_frame.append(start_frame + tgt_motion_length)
        else:
            self.name_list = []
            for name in open(self.anno_file):
                name = name.strip()
                self.name_list.append(name)
    
    def load_annotations_t2m(self):
        self.name_list = []
        self.text_idx = []
        for name in open(self.anno_file):
            name = name.strip()
            meta_path = os.path.join(self.meta_dir, name + ".json")
            meta_data = json.load(open(meta_path))
            downrate = int(meta_data['framerate'] / self.target_framerate + 0.1)
            text_path = os.path.join(self.text_dir, name + ".json")
            text_data = json.load(open(text_path))
            for i, anno in enumerate(text_data):
                start_frame = anno['start_frame'] // downrate
                end_frame = min(anno['end_frame'], meta_data['num_frames']) // downrate
                num_frame = end_frame - start_frame
                if num_frame < self.tgt_min_motion_length or num_frame > self.tgt_max_motion_length:
                    continue
                if len(anno['body_text']) > 0:
                    self.name_list.append(name)
                    self.text_idx.append(i)
    
    def load_annotations_v2m(self):
        if not self.test_mode:
            self.name_list = []
            for name in open(self.anno_file):
                name = name.strip()
                self.name_list.append(name)
        else:
            self.name_list = []
            self.start_frame = []
            self.end_frame = []
            self.valid_start_frame = []
            self.valid_end_frame = []
            for name in open(self.anno_file):
                name = name.strip()
                meta_path = os.path.join(self.meta_dir, name + ".json")
                meta_data = json.load(open(meta_path))
                num_frames = meta_data['num_frames']
                assert num_frames >= self.v2m_window_size
                cur_idx = 0
                while cur_idx < num_frames:
                    if cur_idx + self.v2m_window_size < num_frames:
                        self.name_list.append(name)
                        self.start_frame.append(cur_idx)
                        self.end_frame.append(cur_idx + self.v2m_window_size)
                        self.valid_start_frame.append(cur_idx)
                        self.valid_end_frame.append(cur_idx + self.v2m_window_size)
                        cur_idx += self.v2m_window_size
                    else:
                        self.name_list.append(name)
                        self.start_frame.append(num_frames - self.v2m_window_size)
                        self.end_frame.append(num_frames)
                        self.valid_start_frame.append(cur_idx)
                        self.valid_end_frame.append(num_frames)
                        break
    
    def load_annotations_s2g(self):
        self.name_list = []
        self.speech_idx = []
        for name in open(self.anno_file):
            name = name.strip()
            meta_path = os.path.join(self.meta_dir, name + ".json")
            meta_data = json.load(open(meta_path))
            downrate = int(meta_data['framerate'] / self.target_framerate + 0.1)
            speech_path = os.path.join(self.speech_dir, name + ".json")
            speech_data = json.load(open(speech_path))
            for i, anno in enumerate(speech_data):
                start_frame = anno['start_frame'] // downrate
                end_frame = min(anno['end_frame'], meta_data['num_frames']) // downrate
                num_frame = end_frame - start_frame
                if num_frame < self.tgt_min_motion_length or num_frame > self.tgt_max_motion_length:
                    continue
                self.name_list.append(name)
                self.speech_idx.append(i)
    
    def load_annotations_m2d(self):
        self.name_list = []
        self.music_idx = []
        for name in open(self.anno_file):
            name = name.strip()
            meta_path = os.path.join(self.meta_dir, name + ".json")
            meta_data = json.load(open(meta_path))
            downrate = int(meta_data['framerate'] / self.target_framerate + 0.1)
            music_path = os.path.join(self.music_dir, name + ".json")
            music_data = json.load(open(music_path))
            for i, anno in enumerate(music_data):
                start_frame = anno['start_frame'] // downrate
                end_frame = min(anno['end_frame'], meta_data['num_frames']) // downrate
                num_frame = end_frame - start_frame
                if num_frame < self.tgt_min_motion_length or num_frame > self.tgt_max_motion_length:
                    continue
                self.name_list.append(name)
                self.music_idx.append(i)

    def prepare_data_base(self, idx: int) -> dict:
        results = {}
        name = self.name_list[idx]
        results['motion_path'] = os.path.join(self.motion_dir, name + ".npz")
        meta_path = os.path.join(self.meta_dir, name + ".json")
        meta_data = json.load(open(meta_path))
        meta_data['dataset_name'] = self.dataset_name
        results['meta_data'] = meta_data
        results['meta_data']['sample_idx'] = idx
        results.update({
            'text_word_feat': np.zeros((77, 1024)).astype(np.float32),
            'text_seq_feat': np.zeros((1024)).astype(np.float32),
            'text_cond': 0,
            'music_word_feat': np.zeros((229, 768)).astype(np.float32),
            'music_seq_feat': np.zeros((1024)).astype(np.float32),
            'music_cond': 0,
            'speech_word_feat': np.zeros((229, 768)).astype(np.float32),
            'speech_seq_feat': np.zeros((1024)).astype(np.float32),
            'speech_cond': 0,
            'video_seq_feat': np.zeros((1024)).astype(np.float32),
            'video_cond': 0,
        })
        return results
    
    def prepare_data(self, idx: int) -> dict:
        if self.task_name == 'mocap':
            results = self.prepare_data_mocap(idx)
        elif self.task_name == 't2m':
             results = self.prepare_data_t2m(idx)
        elif self.task_name == 'v2m':
             results = self.prepare_data_v2m(idx)
        elif self.task_name == 's2g':
             results = self.prepare_data_s2g(idx)
        elif self.task_name == 'm2d':
             results = self.prepare_data_m2d(idx)
        else:
            raise NotImplementedError()
        results = self.pipeline(results)
        return results
        
    def prepare_data_mocap(self, idx: int) -> dict:
        results = self.prepare_data_base(idx)
        if self.test_mode:
            results['meta_data']['start_frame'] = self.src_start_frame[idx]
            results['meta_data']['end_frame'] = self.src_end_frame[idx]
            results['context_mask'] = np.concatenate(
                (np.ones((self.mp_input_length - 1)), np.zeros((self.mp_output_length))),
                axis=-1
            )
        return results
    
    def prepare_data_t2m(self, idx: int) -> dict:
        results = self.prepare_data_base(idx)
        name = self.name_list[idx]
        text_idx = self.text_idx[idx]
        text_path = os.path.join(self.text_dir, name + ".json")
        text_data = json.load(open(text_path))[text_idx]
        text_feat_path = os.path.join(self.text_feat_dir, name + ".pkl")
        text_feat_data = pkl.load(open(text_feat_path, "rb"))
        text_list = text_data['body_text']
        tid = np.random.randint(len(text_list))
        text = text_list[tid]
        text_word_feat = text_feat_data['text_word_feats'][text_idx][tid]
        text_seq_feat = text_feat_data['text_seq_feats'][text_idx][tid]
        assert text_word_feat.shape[0] == 77
        assert text_word_feat.shape[1] == 1024
        assert text_seq_feat.shape[0] == 1024

        if self.test_mode:
            motion_path = os.path.join(self.eval_motion_dir, name + ".npy")
            motion_data = np.load(motion_path)
            assert not np.isnan(motion_data).any()
            downrate = int(results['meta_data']['framerate'] / self.target_framerate + 0.1)
            start_frame = text_data['start_frame'] // downrate
            end_frame = text_data['end_frame'] // downrate
            motion_data = motion_data[start_frame: end_frame]
            results['meta_data']['framerate'] = self.target_framerate
            results['meta_data']['rotation_type'] = self.test_rotation_type
            assert motion_data.shape[0] > 0
            if 'body_tokens' in text_data:
                token = text_data['body_tokens'][tid]
            else:
                token = ""
            text_cond = 1
            results.update({
                'motion': motion_data,
                'text_word_feat': text_word_feat,
                'text_seq_feat': text_seq_feat,
                'text_cond': text_cond,
                'text': text,
                'token': token
            })
        else:
            results['meta_data']['start_frame'] = text_data['start_frame']
            results['meta_data']['end_frame'] = text_data['end_frame']
            text_cond = 1
            results.update({
                'text_word_feat': text_word_feat,
                'text_seq_feat': text_seq_feat,
                'text_cond': text_cond
            })
        return results
            
    def prepare_data_v2m(self, idx: int) -> dict:
        results = self.prepare_data_base(idx)
        name = self.name_list[idx]
        video_feat_path = os.path.join(self.video_feat_dir, name + ".pkl")
        video_feat_data = pkl.load(open(video_feat_path, "rb"))
        video_word_feat = video_feat_data['video_word_feats']
        video_seq_feat = video_feat_data['video_seq_feats']
        assert video_word_feat.shape[0] == results['meta_data']['num_frames']
        assert video_word_feat.shape[1] == 1024
        assert video_seq_feat.shape[0] == 1024
        video_cond = 1
        if self.test_mode:
            results['meta_data']['start_frame'] = self.start_frame[idx]
            results['meta_data']['end_frame'] = self.end_frame[idx]
            motion_path = os.path.join(self.eval_motion_dir, name + ".npy")
            motion_data = np.load(motion_path)
            assert not np.isnan(motion_data).any()
            
            start_frame = self.start_frame[idx]
            end_frame = self.end_frame[idx]
            motion_data = motion_data[start_frame: end_frame]
            video_word_feat = video_word_feat[start_frame: end_frame]
            results['meta_data']['framerate'] = self.target_framerate
            results['meta_data']['rotation_type'] = self.test_rotation_type
            assert motion_data.shape[0] > 0
            results.update({
                'motion': motion_data,
                'video_word_feat': video_word_feat,
                'video_seq_feat': video_seq_feat,
                'video_cond': video_cond
            })
        else:
            results.update({
                'video_word_feat': video_word_feat,
                'video_seq_feat': video_seq_feat,
                'video_cond': video_cond
            })
        return results
    
    def prepare_data_s2g(self, idx: int) -> dict:
        results = self.prepare_data_base(idx)
        name = self.name_list[idx]
        speech_idx = self.speech_idx[idx]
        speech_path = os.path.join(self.speech_dir, name + ".json")
        speech_data = json.load(open(speech_path))[speech_idx]
        speech_feat_path = os.path.join(self.speech_feat_dir, name + ".pkl")
        speech_feat_data = pkl.load(open(speech_feat_path, "rb"))
        try:
            speech_word_feat = speech_feat_data['audio_word_feats'][speech_idx]
            speech_seq_feat = speech_feat_data['audio_seq_feats'][speech_idx]
        except:
            speech_word_feat = speech_feat_data['speech_word_feats'][speech_idx]
            speech_seq_feat = speech_feat_data['speech_seq_feats'][speech_idx]
        del speech_feat_data
        assert speech_word_feat.shape[0] == 229
        assert speech_word_feat.shape[1] == 768
        assert speech_seq_feat.shape[0] == 1024
        
        results['meta_data']['start_frame'] = speech_data['start_frame']
        results['meta_data']['end_frame'] = speech_data['end_frame']
        speech_cond = 1
        results.update({
            'speech_word_feat': speech_word_feat,
            'speech_seq_feat': speech_seq_feat,
            'speech_cond': speech_cond
        })
        if self.test_mode:
            results['meta_data']['framerate'] = self.target_framerate
            results['meta_data']['rotation_type'] = self.test_rotation_type
            eval_data_path = os.path.join(self.eval_motion_dir, name + ".npz")
            eval_data = np.load(eval_data_path)
            motion_data = eval_data["bvh_rot_beat141"]
            sem_data = eval_data["sem"]
            wav_data = eval_data["wave16k"]
            assert not np.isnan(motion_data).any()
            
            start_frame = results['meta_data']['start_frame']
            end_frame = results['meta_data']['end_frame']
            wav_start_frame = start_frame / results['meta_data']['framerate'] * 16000
            wav_end_frame = end_frame / results['meta_data']['framerate'] * 16000
            motion_data = motion_data[start_frame: end_frame]
            sem_data = sem_data[start_frame: end_frame]
            wav_data = wav_data[wav_start_frame: wav_end_frame]
            assert motion_data.shape[0] > 0
            results.update({
                'motion': motion_data,
                'sem_score': sem_data,
                'wav_feat': wav_data
            })
        return results
    
    def prepare_data_m2d(self, idx: int) -> dict:
        results = self.prepare_data_base(idx)
        name = self.name_list[idx]
        music_idx = self.music_idx[idx]
        music_path = os.path.join(self.music_dir, name + ".json")
        music_data = json.load(open(music_path))[music_idx]
        music_feat_path = os.path.join(self.music_feat_dir, name + ".pkl")
        music_feat_data = pkl.load(open(music_feat_path, "rb"))
        music_word_feat = music_feat_data['audio_word_feats'][music_idx]
        music_seq_feat = music_feat_data['audio_seq_feats'][music_idx]
        assert music_word_feat.shape[0] == 229
        assert music_word_feat.shape[1] == 768
        assert music_seq_feat.shape[0] == 1024

        results['meta_data']['start_frame'] = music_data['start_frame']
        results['meta_data']['end_frame'] = music_data['end_frame']
        music_cond = 1
        results.update({
            'music_word_feat': music_word_feat,
            'music_seq_feat': music_seq_feat,
            'music_cond': music_cond
        })
        return results

    def prepare_evaluation(self):
        """
        Prepare the dataset for evaluation by initializing evaluators and creating evaluation indexes.
        """
        self.evaluators = []
        self.eval_indexes = []
        self.evaluator_model = build_submodule(self.eval_cfg.get('evaluator_model', None))
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        if self.evaluator_model is not None:
            self.evaluator_model = self.evaluator_model.to(device)
            self.evaluator_model.eval()
        self.eval_cfg['evaluator_model'] = self.evaluator_model

        for _ in range(self.eval_cfg['replication_times']):
            eval_indexes = np.arange(len(self.name_list))
            if self.eval_cfg.get('shuffle_indexes', False):
                np.random.shuffle(eval_indexes)
            self.eval_indexes.append(eval_indexes)

        for metric in self.eval_cfg['metrics']:
            evaluator, self.eval_indexes = build_evaluator(
                metric, self.eval_cfg, len(self.name_list), self.eval_indexes)
            self.evaluators.append(evaluator)

        self.eval_indexes = np.concatenate(self.eval_indexes)
        
    def process_outputs(self, results):
        return results

    def evaluate(self, results: List[dict], work_dir: str, logger=None) -> dict:
        """
        Evaluate the model performance based on the results.

        Args:
            results (list): A list of result dictionaries.
            work_dir (str): Directory where evaluation logs will be stored.
            logger: Logger object to record evaluation results (optional).

        Returns:
            dict: Dictionary containing evaluation metrics.
        """
        metrics = {}
        results = self.process_outputs(results)
        for evaluator in self.evaluators:
            metrics.update(evaluator.evaluate(results))
        if logger is not None:
            logger.info(metrics)
        eval_output = os.path.join(work_dir, 'eval_results.log')
        with open(eval_output, 'w') as f:
            for k, v in metrics.items():
                f.write(k + ': ' + str(v) + '\n')
        return metrics
    

def create_single_dataset(cfg: dict):
    dataset_path = cfg['dataset_path']
    if dataset_path == 'amass':
        return MotionVerseAMASS(**cfg)
    elif dataset_path == 'humanml3d':
        return MotionVerseH3D(**cfg)
    elif dataset_path == 'kitml':
        return MotionVerseKIT(**cfg)
    elif dataset_path == 'babel':
        return MotionVerseBABEL(**cfg)
    elif dataset_path == 'motionx':
        return MotionVerseMotionX(**cfg)
    elif dataset_path == 'humanact12':
        return MotionVerseACT12(**cfg)
    elif dataset_path == 'uestc':
        return MotionVerseUESTC(**cfg)
    elif dataset_path == 'ntu':
        return MotionVerseNTU(**cfg)
    elif dataset_path == 'h36m':
        return MotionVerseH36M(**cfg)
    elif dataset_path == 'mpi':
        return MotionVerseMPI(**cfg)
    elif dataset_path == 'pw3d':
        return MotionVersePW3D(**cfg)
    elif dataset_path == 'aist':
        return MotionVerseAIST(**cfg)
    elif dataset_path == 'beat':
        return MotionVerseBEAT(**cfg)
    elif dataset_path == 'tedg':
        return MotionVerseTEDG(**cfg)
    elif dataset_path == 'tedex':
        return MotionVerseTEDEx(**cfg)
    elif dataset_path == 's2g3d':
        return MotionVerseS2G3D(**cfg)
    else:
        raise NotImplementedError()
    

@DATASETS.register_module()
class MotionVerse(Dataset):
    """
    A dataset class that handles multiple MotionBench datasets.

    Args:
        dataset_cfgs (list[str]): List of dataset configurations.
        partitions (list[float]): List of partition weights corresponding to the datasets.
        num_data (Optional[int]): Number of data samples to load. Defaults to None.
        data_prefix (str): Path to the directory containing the dataset.
    """

    def __init__(self,
                 dataset_cfgs: List[dict],
                 partitions: List[int],
                 num_data: Optional[int] = None,
                 data_prefix: Optional[str] = None):
        """Load data from multiple datasets."""
        assert min(partitions) >= 0
        assert len(dataset_cfgs) == len(partitions)
        datasets = []
        new_partitions = []
        for idx, cfg in enumerate(dataset_cfgs):
            if partitions[idx] == 0:
                continue
            new_partitions.append(partitions[idx])
            cfg.update({
                'data_prefix': data_prefix
            })
            datasets.append(create_single_dataset(cfg))
        self.dataset = ConcatDataset(datasets)
        if num_data is not None:
            self.length = num_data
        else:
            self.length = max(len(ds) for ds in datasets)
        partitions = new_partitions
        weights = [np.ones(len(ds)) * p / len(ds) for (p, ds) in zip(partitions, datasets)]
        weights = np.concatenate(weights, axis=0)
        self.weights = weights
        self.task_proj = {
            'mocap': 0,
            't2m': 1,
            'v2m': 2,
            's2g': 3,
            'm2d': 4
        }
        self.task_idx_list = []
        for ds in datasets:
            self.task_idx_list += [self.task_proj[ds.task_name]] * len(ds)

    def __len__(self) -> int:
        """Get the size of the dataset."""
        return self.length

    def __getitem__(self, idx: int) -> dict:
        """Given an index, sample data from multiple datasets with the specified proportion."""
        return self.dataset[idx]

    def get_task_idx(self, idx: int) -> int:
        return self.task_idx_list[idx]


@DATASETS.register_module()
class MotionVerseEval(Dataset):

    def __init__(self,
                 eval_cfgs: dict,
                 testset: str,
                 test_mode: bool = True):
        """Load data from multiple datasets."""
        assert testset in eval_cfgs
        dataset_path, task_name = testset.split('_')
        dataset_cfg = eval_cfgs[testset]
        dataset_cfg['dataset_path'] = dataset_path
        dataset_cfg['task_name'] = task_name
        dataset_cfg['test_mode'] = test_mode
        self.dataset = create_single_dataset(dataset_cfg)

    def __len__(self) -> int:
        return len(self.dataset)

    def __getitem__(self, idx: int) -> dict:
        return self.dataset[idx]
    
    def load_annotation(self):
        self.dataset.load_annotation()

    def prepare_data(self, idx: int) -> dict:
        return self.dataset.prepare_data(idx)

    def prepare_evaluation(self):
        self.dataset.prepare_evaluation()
        
    def process_outputs(self, results):
        return self.dataset.process_outputs(results)

    def evaluate(self, results: List[dict], work_dir: str, logger=None) -> dict:
        return self.dataset.evaluate(results=results, work_dir=work_dir, logger=logger)


@DATASETS.register_module()
class MotionVerseAMASS(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'amass'
        task_name = kwargs['task_name']
        assert task_name in ['mocap']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseH3D(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'humanml3d'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseKIT(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'kitml'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseBABEL(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'babel'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseMotionX(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'motionx'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseACT12(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'humanact12'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)
    

@DATASETS.register_module()
class MotionVerseUESTC(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'uestc'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseNTU(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'ntu'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 't2m']
        super().__init__(**kwargs)
        
        
@DATASETS.register_module()
class MotionVerseH36M(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'h36m'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 'v2m']
        super().__init__(**kwargs)
        

@DATASETS.register_module()
class MotionVerseMPI(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'mpi'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 'v2m']
        super().__init__(**kwargs)
        

@DATASETS.register_module()
class MotionVersePW3D(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = '3dpw'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 'v2m']
        super().__init__(**kwargs)

        
@DATASETS.register_module()
class MotionVerseAIST(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'aist'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 'm2d']
        super().__init__(**kwargs)


@DATASETS.register_module()
class MotionVerseBEAT(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'beat'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 's2g']
        super().__init__(**kwargs)

        
@DATASETS.register_module()
class MotionVerseTEDG(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'tedg'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 's2g']
        super().__init__(**kwargs)
        
        
@DATASETS.register_module()
class MotionVerseTEDEx(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 'tedex'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 's2g']
        super().__init__(**kwargs)
        
        
@DATASETS.register_module()
class MotionVerseS2G3D(SingleMotionVerseDataset):

    def __init__(self, **kwargs):
        if 'dataset_path' not in kwargs:
            kwargs['dataset_path'] = 's2g3d'
        task_name = kwargs['task_name']
        assert task_name in ['mocap', 's2g']
        super().__init__(**kwargs)