File size: 4,080 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from collections.abc import Sequence

import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC

from ..builder import PIPELINES


def to_tensor(data):
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.
    """
    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not mmcv.is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(
            f'Type {type(data)} cannot be converted to tensor.'
            'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
            '`Sequence`, `int` and `float`')


@PIPELINES.register_module()
class ToTensor(object):

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            results[key] = to_tensor(results[key])
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


@PIPELINES.register_module()
class Transpose(object):

    def __init__(self, keys, order):
        self.keys = keys
        self.order = order

    def __call__(self, results):
        for key in self.keys:
            results[key] = results[key].transpose(self.order)
        return results

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, order={self.order})'


@PIPELINES.register_module()
class Collect(object):
    """Collect data from the loader relevant to the specific task.

    This is usually the last stage of the data loader pipeline.

    Args:
        keys (Sequence[str]): Keys of results to be collected in ``data``.
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[motion_metas]``.
            Default: ``('filename', 'ori_filename',
                'ori_shape', 'motion_shape', 'motion_mask')``

    Returns:
        dict: The result dict contains the following keys
                - keys in``self.keys``
                - ``motion_metas`` if available
    """

    def __init__(self,
                 keys,
                 meta_keys=('filename', 'ori_filename', 'ori_shape',
                            'motion_shape', 'motion_mask')):
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
        data = {}
        motion_meta = {}
        for key in self.meta_keys:
            if key in results:
                motion_meta[key] = results[key]
        data['motion_metas'] = DC(motion_meta, cpu_only=True)
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, meta_keys={self.meta_keys})'


@PIPELINES.register_module()
class WrapFieldsToLists(object):
    """Wrap fields of the data dictionary into lists for evaluation.

    This class can be used as a last step of a test or validation
    pipeline for single image evaluation or inference.

    Example:
        >>> test_pipeline = [
        >>>    dict(type='LoadImageFromFile'),
        >>>    dict(type='Normalize',
                    mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True),
        >>>    dict(type='ImageToTensor', keys=['img']),
        >>>    dict(type='Collect', keys=['img']),
        >>>    dict(type='WrapIntoLists')
        >>> ]
    """

    def __call__(self, results):
        # Wrap dict fields into lists
        for key, val in results.items():
            results[key] = [val]
        return results

    def __repr__(self):
        return f'{self.__class__.__name__}()'