File size: 6,085 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import random
from typing import Optional, Union

import numpy as np
import torch

from ..builder import PIPELINES


@PIPELINES.register_module()
class Crop(object):
    r"""Crop motion sequences.

    Args:
        crop_size (int): The size of the cropped motion sequence.
    """

    def __init__(self, crop_size: Optional[Union[int, None]] = None):
        self.crop_size = crop_size
        assert self.crop_size is not None

    def __call__(self, results):
        motion = results['motion']
        length = len(motion)
        if length >= self.crop_size:
            idx = random.randint(0, length - self.crop_size)
            motion = motion[idx:idx + self.crop_size]
            results['motion_length'] = self.crop_size
        else:
            padding_length = self.crop_size - length
            D = motion.shape[1:]
            padding_zeros = np.zeros((padding_length, *D), dtype=np.float32)
            motion = np.concatenate([motion, padding_zeros], axis=0)
            results['motion_length'] = length
        assert len(motion) == self.crop_size
        results['motion'] = motion
        results['motion_shape'] = motion.shape
        if length >= self.crop_size:
            results['motion_mask'] = torch.ones(self.crop_size).numpy()
        else:
            results['motion_mask'] = torch.cat(
                (torch.ones(length),
                 torch.zeros(self.crop_size - length))).numpy()
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size})'
        return repr_str


@PIPELINES.register_module()
class PairCrop(object):
    r"""Crop motion sequences.

    Args:
        crop_size (int): The size of the cropped motion sequence.
    """

    def __init__(self, crop_size: Optional[Union[int, None]] = None):
        self.crop_size = crop_size
        assert self.crop_size is not None

    def __call__(self, results):
        motion = results['motion']
        raw_motion = results['raw_motion']
        length = len(motion)
        if length >= self.crop_size:
            idx = random.randint(0, length - self.crop_size)
            motion = motion[idx:idx + self.crop_size]
            raw_motion = raw_motion[idx:idx + self.crop_size]
            results['motion_length'] = self.crop_size
        else:
            padding_length = self.crop_size - length
            D = motion.shape[1:]
            padding_zeros = np.zeros((padding_length, *D), dtype=np.float32)
            motion = np.concatenate([motion, padding_zeros], axis=0)
            D = raw_motion.shape[1:]
            padding_zeros = np.zeros((padding_length, *D), dtype=np.float32)
            raw_motion = np.concatenate([raw_motion, padding_zeros], axis=0)
            results['motion_length'] = length
        assert len(motion) == self.crop_size
        assert len(raw_motion) == self.crop_size
        results['motion'] = motion
        results['raw_motion'] = raw_motion
        results['motion_shape'] = motion.shape
        if length >= self.crop_size:
            results['motion_mask'] = torch.ones(self.crop_size).numpy()
        else:
            results['motion_mask'] = torch.cat(
                (torch.ones(length),
                 torch.zeros(self.crop_size - length))).numpy()
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size})'
        return repr_str
    

@PIPELINES.register_module()
class RandomCrop(object):
    r"""Random crop motion sequences. Each sequence will be padded with zeros
    to the maximum length.

    Args:
        min_size (int or None): The minimum size of the cropped motion
            sequence (inclusive).
        max_size (int or None): The maximum size of the cropped motion
            sequence (inclusive).
    """

    def __init__(self,
                 min_size: Optional[Union[int, None]] = None,
                 max_size: Optional[Union[int, None]] = None):
        self.min_size = min_size
        self.max_size = max_size
        assert self.min_size is not None
        assert self.max_size is not None

    def __call__(self, results):
        motion = results['motion']
        length = len(motion)
        crop_size = random.randint(self.min_size, self.max_size)
        if length > crop_size:
            idx = random.randint(0, length - crop_size)
            motion = motion[idx:idx + crop_size]
            results['motion_length'] = crop_size
        else:
            results['motion_length'] = length
        padding_length = self.max_size - min(crop_size, length)
        if padding_length > 0:
            D = motion.shape[1:]
            padding_zeros = np.zeros((padding_length, *D), dtype=np.float32)
            motion = np.concatenate([motion, padding_zeros], axis=0)
        results['motion'] = motion
        results['motion_shape'] = motion.shape
        if length >= self.max_size and crop_size == self.max_size:
            results['motion_mask'] = torch.ones(self.max_size).numpy()
        else:
            results['motion_mask'] = torch.cat(
                (torch.ones(min(length, crop_size)),
                 torch.zeros(self.max_size - min(length, crop_size))),
                dim=0).numpy()
        assert len(motion) == self.max_size
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__ + f'(min_size={self.min_size}'
        repr_str += f', max_size={self.max_size})'
        return repr_str


@PIPELINES.register_module()
class Normalize(object):
    """Normalize motion sequences.

    Args:
        mean_path (str): Path of mean file.
        std_path (str): Path of std file.
    """

    def __init__(self, mean_path, std_path, eps=1e-9, keys=['motion']):
        self.mean = np.load(mean_path)
        self.std = np.load(std_path)
        self.eps = eps
        self.keys = keys

    def __call__(self, results):
        for k in self.keys:
            motion = results[k]
            motion = (motion - self.mean) / (self.std + self.eps)
            results[k] = motion
        return results