Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import re | |
import os | |
import sys | |
import random | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
import gradio as gr | |
def greet(co): | |
code_text = [] | |
while True: | |
code = co | |
if not code: | |
break | |
code_text.append(code) | |
''' | |
iter_num = int( | |
input('false alarm์ ๋ถ๋ฅํ๊ธฐ ์ํด์ ์ ๋ ฅํ ์ฝ๋์ ๊ฐฏ์๋ ๋ช๊ฐ์ธ๊ฐ์? (์ซ์๋ง ์ ๋ ฅํ์ธ์.) : ')) | |
code_text = [] | |
for _ in range(iter_num): | |
code = input('์ฝ๋๋ฅผ ์ ๋ ฅํ์ธ์ : ') | |
code_text.append(code) | |
''' | |
code_text = ' '.join(code_text) | |
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text) | |
code_text = re.sub('\/\/.*', '', code_text) | |
code_text = re.sub('(\\\\n)+', '\\n', code_text) | |
# 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model | |
path = os.getcwd() + '/models/CFA-CodeBERTa-small.pt' | |
tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1") | |
input_ids = tokenizer.encode( | |
code_text, max_length=512, truncation=True, padding='max_length') | |
input_ids = torch.tensor([input_ids]) | |
model = RobertaForSequenceClassification.from_pretrained( | |
path, num_labels=2) | |
model.to('cpu') | |
pred_1 = model(input_ids)[0].detach().cpu().numpy()[0] | |
# model(input_ids)[0].argmax().detach().cpu().numpy().item() | |
# 2. CFA-codebert-c.pt -> codebert-c finetuning model | |
path = os.getcwd() + '/models/CFA-codebert-c.pt' | |
tokenizer = AutoTokenizer.from_pretrained(path) | |
input_ids = tokenizer(code_text, padding=True, max_length=512, | |
truncation=True, return_token_type_ids=True)['input_ids'] | |
input_ids = torch.tensor([input_ids]) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
path, num_labels=2) | |
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0] | |
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model | |
path = os.getcwd() + '/models/CFA-codebert-c-v2.pt' | |
tokenizer = RobertaTokenizer.from_pretrained(path) | |
input_ids = tokenizer(code_text, padding=True, max_length=512, | |
truncation=True, return_token_type_ids=True)['input_ids'] | |
input_ids = torch.tensor([input_ids]) | |
model = RobertaForSequenceClassification.from_pretrained( | |
path, num_labels=2) | |
pred_3 = model(input_ids)[0].detach().cpu().numpy() | |
# 4. codeT5 finetuning model | |
path = os.getcwd() + '/models/CFA-codeT5' | |
model_params = { | |
# model_type: t5-base/t5-large | |
"MODEL": path, | |
"TRAIN_BATCH_SIZE": 8, # training batch size | |
"VALID_BATCH_SIZE": 8, # validation batch size | |
"VAL_EPOCHS": 1, # number of validation epochs | |
"MAX_SOURCE_TEXT_LENGTH": 512, # max length of source text | |
"MAX_TARGET_TEXT_LENGTH": 3, # max length of target text | |
"SEED": 2022, # set seed for reproducibility | |
} | |
data = pd.DataFrame({'code': [code_text]}) | |
pred_4 = T5Trainer( | |
dataframe=data, | |
source_text="code", | |
model_params=model_params | |
) | |
pred_4 = int(pred_4[0]) | |
# ensemble | |
tot_result = (pred_1 * 0.8 + pred_2 * 0.1 + | |
pred_3 * 0.1 + pred_4 * 0.1).argmax() | |
return tot_result | |
# codeT5 | |
class YourDataSetClass(Dataset): | |
def __init__( | |
self, dataframe, tokenizer, source_len, source_text): | |
self.tokenizer = tokenizer | |
self.data = dataframe | |
self.source_len = source_len | |
# self.summ_len = target_len | |
# self.target_text = self.data[target_text] | |
self.source_text = self.data[source_text] | |
def __len__(self): | |
return len(self.source_text) | |
def __getitem__(self, index): | |
source_text = str(self.source_text[index]) | |
source_text = " ".join(source_text.split()) | |
source = self.tokenizer.batch_encode_plus( | |
[source_text], | |
max_length=self.source_len, | |
pad_to_max_length=True, | |
truncation=True, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
source_ids = source["input_ids"].squeeze() | |
source_mask = source["attention_mask"].squeeze() | |
return { | |
"source_ids": source_ids.to(dtype=torch.long), | |
"source_mask": source_mask.to(dtype=torch.long), | |
} | |
def validate(epoch, tokenizer, model, device, loader): | |
model.eval() | |
predictions = [] | |
with torch.no_grad(): | |
for _, data in enumerate(loader, 0): | |
ids = data['source_ids'].to(device, dtype=torch.long) | |
mask = data['source_mask'].to(device, dtype=torch.long) | |
generated_ids = model.generate( | |
input_ids=ids, | |
attention_mask=mask, | |
max_length=150, | |
num_beams=2, | |
repetition_penalty=2.5, | |
length_penalty=1.0, | |
early_stopping=True | |
) | |
preds = [tokenizer.decode( | |
g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] | |
if ((preds != '0') | (preds != '1')): | |
preds = '0' | |
predictions.extend(preds) | |
return predictions | |
def T5Trainer(dataframe, source_text, model_params, step="test",): | |
torch.manual_seed(model_params["SEED"]) # pytorch random seed | |
np.random.seed(model_params["SEED"]) # numpy random seed | |
torch.backends.cudnn.deterministic = True | |
tokenizer = T5Tokenizer.from_pretrained(model_params["MODEL"]) | |
model = T5ForConditionalGeneration.from_pretrained(model_params["MODEL"]) | |
model = model.to('cpu') | |
dataframe = dataframe[[source_text]] | |
val_dataset = dataframe | |
val_set = YourDataSetClass( | |
val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], source_text) | |
val_params = { | |
'batch_size': model_params["VALID_BATCH_SIZE"], | |
'shuffle': False, | |
'num_workers': 0 | |
} | |
val_loader = DataLoader(val_set, **val_params) | |
for epoch in range(model_params["VAL_EPOCHS"]): | |
predictions = validate(epoch, tokenizer, model, 'cpu', val_loader) | |
return predictions | |
################################################################################# | |
demo = gr.Interface( | |
fn = greet, | |
inputs = "text", | |
outputs= "number") | |
demo.launch(share=True) | |