Spaces:
Runtime error
Runtime error
File size: 5,017 Bytes
9c55c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import matplotlib.pyplot as plt
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import plotly.express as px
import plotly.graph_objects as go
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM
from datetime import date, datetime, timedelta
from stocknews import StockNews
# --- SIDEBAR CODE
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD"])
start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365))
end_date = st.sidebar.date_input('End Date')
# --- MAIN PAGE
st.header('Cryptocurrency Prediction')
col1, col2, = st.columns([1,9])
with col1:
st.image('icons/'+ ticker +'.png', width=75)
with col2:
st.write(f" ## { ticker}")
ticker_obj = yf.Ticker(ticker)
# --- CODE
model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date)
# Extract the 'close' column for prediction
target_data = model_data["Close"].values.reshape(-1, 1)
# Normalize the target data
scaler = MinMaxScaler()
target_data_normalized = scaler.fit_transform(target_data)
# Normalize the input features
input_features = ['Open', 'High', 'Low', 'Volume']
input_data = model_data[input_features].values
input_data_normalized = scaler.fit_transform(input_data)
def build_lstm_model(input_data, output_size, neurons, activ_func='linear', dropout=0.2, loss='mse', optimizer='adam'):
model = Sequential()
model.add(LSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2])))
model.add(Dropout(dropout))
model.add(Dense(units=output_size))
model.add(Activation(activ_func))
model.compile(loss=loss, optimizer=optimizer)
return model
# Hyperparameters
np.random.seed(245)
window_len = 10
split_ratio = 0.8 # Ratio of training set to total data
zero_base = True
lstm_neurons = 50
epochs = 100
batch_size = 128 #32
loss = 'mean_squared_error'
dropout = 0.24
optimizer = 'adam'
def extract_window_data(input_data, target_data, window_len):
X = []
y = []
for i in range(len(input_data) - window_len):
X.append(input_data[i : i + window_len])
y.append(target_data[i + window_len])
return np.array(X), np.array(y)
X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len)
# Split the data into training and testing sets
split_ratio = 0.8 # Ratio of training set to total data
split_index = int(split_ratio * len(X))
X_train, X_test = X[:split_index], X[split_index:]
y_train, y_test = y[:split_index], y[split_index:]
# Creating model
model = build_lstm_model(X_train, output_size=1, neurons=lstm_neurons, dropout=dropout, loss=loss, optimizer=optimizer)
# Saved Weights
file_path = "./LSTM_" + ticker + "_weights.h5"
# Loads the weights
model.load_weights(file_path)
# Step 4: Make predictions
preds = model.predict(X_test)
y_test = y[split_index:]
# Normalize the target data
scaler = MinMaxScaler()
target_data_normalized = scaler.fit_transform(target_data)
# Inverse normalize the predictions
preds = preds.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
preds = scaler.inverse_transform(preds)
y_test = scaler.inverse_transform(y_test)
fig = px.line(x=model_data.index[-len(y_test):],
y=[y_test.flatten(), preds.flatten()])
newnames = {'wide_variable_0':'Real Values', 'wide_variable_1': 'Predictions'}
fig.for_each_trace(lambda t: t.update(name = newnames[t.name],
legendgroup = newnames[t.name],
hovertemplate = t.hovertemplate.replace(t.name, newnames[t.name])))
fig.update_layout(
xaxis_title="Date",
yaxis_title=ticker+" Price",
legend_title=" ")
st.write(fig)
# --- INFO BUBBLE
about_data, news = st.tabs(["About", "News"])
with about_data:
# Candlestick
raw_data = ticker_obj.history(start=start_date, end=end_date)
fig = go.Figure(data=[go.Candlestick(x=raw_data.index,
open=raw_data['Open'],
high=raw_data['High'],
low=raw_data['Low'],
close=raw_data['Close'])])
fig.update_layout(
title=ticker + " candlestick : Open, High, Low and Close",
yaxis_title=ticker + ' Price')
st.plotly_chart(fig)
# Table
history_data = raw_data.copy()
# Formating index Date
history_data.index = pd.to_datetime(history_data.index, format='%Y-%m-%d %H:%M:%S').date
history_data.index.name = "Date"
history_data.sort_values(by='Date', ascending=False, inplace=True)
st.write(history_data)
with news:
sNews = StockNews(ticker, save_news=False)
sNews_df = sNews.read_rss()
# Showing most recent news
for i in range(10):
st.subheader(f"{i+1} - {sNews_df['title'][i]}")
st.write(sNews_df['summary'][i])
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")
|