File size: 5,017 Bytes
9c55c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import matplotlib.pyplot as plt
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import plotly.express as px
import plotly.graph_objects as go

from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM
from datetime import date, datetime, timedelta
from stocknews import StockNews



# --- SIDEBAR CODE
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD"])

start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365))
end_date = st.sidebar.date_input('End Date')


# --- MAIN PAGE
st.header('Cryptocurrency Prediction')

col1, col2, = st.columns([1,9])
with col1:
  st.image('icons/'+ ticker +'.png', width=75)
with col2:
  st.write(f" ## { ticker}")

ticker_obj = yf.Ticker(ticker)


# --- CODE

model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date)

# Extract the 'close' column for prediction
target_data = model_data["Close"].values.reshape(-1, 1)

# Normalize the target data
scaler = MinMaxScaler()
target_data_normalized = scaler.fit_transform(target_data)

# Normalize the input features
input_features = ['Open', 'High', 'Low', 'Volume']
input_data = model_data[input_features].values
input_data_normalized = scaler.fit_transform(input_data)

def build_lstm_model(input_data, output_size, neurons, activ_func='linear', dropout=0.2, loss='mse', optimizer='adam'):
    model = Sequential()
    model.add(LSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2])))
    model.add(Dropout(dropout))
    model.add(Dense(units=output_size))
    model.add(Activation(activ_func))

    model.compile(loss=loss, optimizer=optimizer)

    return model


# Hyperparameters
np.random.seed(245)
window_len = 10
split_ratio = 0.8  # Ratio of training set to total data
zero_base = True
lstm_neurons = 50
epochs = 100
batch_size = 128 #32
loss = 'mean_squared_error'
dropout = 0.24
optimizer = 'adam'

def extract_window_data(input_data, target_data, window_len):
    X = []
    y = []
    for i in range(len(input_data) - window_len):
        X.append(input_data[i : i + window_len])
        y.append(target_data[i + window_len])
    return np.array(X), np.array(y)

X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len)


# Split the data into training and testing sets
split_ratio = 0.8  # Ratio of training set to total data
split_index = int(split_ratio * len(X))

X_train, X_test = X[:split_index], X[split_index:]
y_train, y_test = y[:split_index], y[split_index:]

# Creating model
model = build_lstm_model(X_train, output_size=1, neurons=lstm_neurons, dropout=dropout, loss=loss, optimizer=optimizer)

# Saved Weights
file_path = "./LSTM_" + ticker + "_weights.h5"

# Loads the weights
model.load_weights(file_path)

# Step 4: Make predictions
preds = model.predict(X_test)
y_test = y[split_index:]

# Normalize the target data
scaler = MinMaxScaler()
target_data_normalized = scaler.fit_transform(target_data)

# Inverse normalize the predictions
preds = preds.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
preds = scaler.inverse_transform(preds)
y_test = scaler.inverse_transform(y_test)

fig = px.line(x=model_data.index[-len(y_test):],
              y=[y_test.flatten(), preds.flatten()])
newnames = {'wide_variable_0':'Real Values', 'wide_variable_1': 'Predictions'}
fig.for_each_trace(lambda t: t.update(name = newnames[t.name],
                                      legendgroup = newnames[t.name],
                                      hovertemplate = t.hovertemplate.replace(t.name, newnames[t.name])))
fig.update_layout(
    xaxis_title="Date",
    yaxis_title=ticker+" Price",
    legend_title=" ")
st.write(fig)


# --- INFO BUBBLE

about_data, news = st.tabs(["About", "News"])

with about_data:
  # Candlestick
  raw_data = ticker_obj.history(start=start_date, end=end_date)
  fig = go.Figure(data=[go.Candlestick(x=raw_data.index,
                  open=raw_data['Open'],
                  high=raw_data['High'],
                  low=raw_data['Low'],
                  close=raw_data['Close'])])
  fig.update_layout(
                  title=ticker + " candlestick : Open, High, Low and Close",
                  yaxis_title=ticker + ' Price')
  st.plotly_chart(fig)

  # Table
  history_data = raw_data.copy()

  # Formating index Date
  history_data.index = pd.to_datetime(history_data.index, format='%Y-%m-%d %H:%M:%S').date
  history_data.index.name = "Date"
  history_data.sort_values(by='Date', ascending=False, inplace=True)
  st.write(history_data)


with news:
  sNews = StockNews(ticker, save_news=False)
  sNews_df = sNews.read_rss()

  # Showing most recent news
  for i in range(10):
    st.subheader(f"{i+1} - {sNews_df['title'][i]}")
    st.write(sNews_df['summary'][i])
    date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
    st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")