app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
4 |
# Load the smaller model and tokenizer
|
5 |
-
model_name = "distilgpt2"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
|
|
|
|
|
|
|
|
9 |
def generate_response(prompt):
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
13 |
return response
|
14 |
|
15 |
# Set up Gradio interface
|
@@ -21,4 +32,5 @@ iface = gr.Interface(
|
|
21 |
description="Enter your prompt related to Bitcoin or cryptocurrency."
|
22 |
)
|
23 |
|
|
|
24 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
# Load the smaller model and tokenizer
|
6 |
+
model_name = "distilgpt2" # A smaller model that should work with 16GB of RAM
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Set the device to GPU if available, else use CPU
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
def generate_response(prompt):
|
15 |
+
# Encode the input prompt
|
16 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
17 |
+
|
18 |
+
# Generate the output sequence
|
19 |
+
outputs = model.generate(inputs, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
20 |
+
|
21 |
+
# Decode the generated sequence
|
22 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
|
24 |
return response
|
25 |
|
26 |
# Set up Gradio interface
|
|
|
32 |
description="Enter your prompt related to Bitcoin or cryptocurrency."
|
33 |
)
|
34 |
|
35 |
+
# Launch the interface
|
36 |
iface.launch()
|