Spaces:
Build error
Build error
File size: 3,060 Bytes
8ce5e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import os
import sys
import base64
from io import BytesIO
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
from torch import nn
from fastapi import FastAPI
import numpy as np
from PIL import Image
import clip
from dalle.models import Dalle
from dalle.utils.utils import clip_score, download
print("Loading models...")
app = FastAPI()
# url = "https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz"
# root = os.path.expanduser("~/.cache/minDALLE")
# filename = os.path.basename(url)
# pathname = filename[: -len(".tar.gz")]
# download_target = os.path.join(root, filename)
# result_path = os.path.join(root, pathname)
# if not os.path.exists(result_path):
# result_path = download(url, root)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Dalle.from_pretrained("minDALL-E/1.3B") # This will automatically download the pretrained model.
model.to(device=device)
# -----------------------------------------------------------
state_dict_ = torch.load('last.ckpt', map_location='cpu')
vqgan_stage_dict = model.stage1.state_dict()
for name, param in state_dict_['state_dict'].items():
if name not in model.stage1.state_dict().keys():
continue
if isinstance(param, nn.parameter.Parameter):
param = param.data
vqgan_stage_dict[name].copy_(param)
model.stage1.load_state_dict(vqgan_stage_dict)
# ---------------------------------------------------------
# state_dict_dalle = torch.load('dalle_last.ckpt', map_location='cpu')
# dalle_stage_dict = model.stage2.state_dict()
#
# for name, param in state_dict_dalle['state_dict'].items():
# if name[6:] not in model.stage2.state_dict().keys():
# print(name)
# continue
# if isinstance(param, nn.parameter.Parameter):
# param = param.data
# dalle_stage_dict[name[6:]].copy_(param)
#
# model.stage2.load_state_dict(dalle_stage_dict)
# model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
# model_clip.to(device=device)
print("Models loaded !")
@app.get("/")
def read_root():
return {"minDALL-E!"}
@app.get("/{generate}")
def generate(prompt):
images = sample(prompt)
images = [to_base64(image) for image in images]
return {"images": images}
def sample(prompt):
# Sampling
images = (
model.sampling(prompt=prompt, top_k=96, top_p=None, softmax_temperature=1.0, num_candidates=9, device=device)
.cpu()
.numpy()
)
images = np.transpose(images, (0, 2, 3, 1))
# CLIP Re-ranking
rank = clip_score(
prompt=prompt, images=images, model_clip=model_clip, preprocess_clip=preprocess_clip, device=device
)
images = images[rank]
pil_images = []
for i in range(len(images)):
im = Image.fromarray((images[i] * 255).astype(np.uint8))
pil_images.append(im)
return pil_images
def to_base64(pil_image):
buffered = BytesIO()
pil_image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()) |