File size: 5,514 Bytes
8ce5e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------

import torch
from typing import Optional
from tqdm import tqdm
from torch.nn import functional as F


def cutoff_topk_logits(logits: torch.FloatTensor, k: int) -> torch.FloatTensor:
    if k is None:
        return logits
    else:
        v, ix = torch.topk(logits, k)
        out = logits.clone()
        out[out < v[:, [-1]]] = -float('Inf')
        return out


def cutoff_topp_probs(probs: torch.FloatTensor, p: float) -> torch.FloatTensor:
    if p is None:
        return probs
    else:
        sorted_probs, sorted_indices = torch.sort(probs, dim=-1, descending=True)
        cum_probs = torch.cumsum(sorted_probs, dim=-1)

        sorted_idx_remove_cond = cum_probs >= p

        sorted_idx_remove_cond[..., 1:] = sorted_idx_remove_cond[..., :-1].clone()
        sorted_idx_remove_cond[..., 0] = 0

        indices_to_remove = sorted_idx_remove_cond.scatter(-1, sorted_indices, sorted_idx_remove_cond)
        probs = probs.masked_fill(indices_to_remove, 0.0)
        norm_probs = probs / torch.sum(probs, dim=-1, keepdim=True)
        return norm_probs


def get_positional_encoding(inputs: torch.LongTensor, mode: str = '1d') -> torch.LongTensor:
    device = inputs.device
    if mode == '1d':
        B, N = inputs.shape
        xs_pos = torch.arange(N, device=device).repeat((B, 1))
    elif mode == '2d':
        B, H, W = inputs.shape
        xs_pos_h = torch.arange(H, device=device).repeat(B, W, 1).transpose(1, 2)
        xs_pos_w = torch.arange(W, device=device).repeat(B, H, 1)
        xs_pos = (xs_pos_h, xs_pos_w)
    else:
        raise ValueError('%s positional encoding invalid' % mode)
    return xs_pos


@torch.no_grad()
def sampling(model: torch.nn.Module,
             tokens: torch.LongTensor,
             top_k: Optional[float] = None,
             top_p: Optional[float] = None,
             softmax_temperature: float = 1.0,
             is_tqdm: bool = True,
             use_fp16: bool = True,
             max_seq_len: int = 256) -> torch.LongTensor:
    code = None
    past = None

    pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
    pos_enc_tokens = get_positional_encoding(tokens, mode='1d')

    for cnt, h in enumerate(pbar):
        if code is None:
            code_ = None
            pos_enc_code_ = None
        else:
            code_ = code.clone().detach()
            pos_enc_code_ = get_positional_encoding(code_, mode='1d')
            code_ = code_[:, cnt-1].unsqueeze(-1)
            pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)

        logits, present = model.sampling(images=code_,
                                         texts=tokens,
                                         pos_images=pos_enc_code_,
                                         pos_texts=pos_enc_tokens,
                                         use_fp16=use_fp16,
                                         past=past)
        logits = logits.to(dtype=torch.float32)
        logits = logits / softmax_temperature

        present = torch.stack(present).clone().detach()
        if past is None:
            past = [present]
        else:
            past.append(present)

        logits = cutoff_topk_logits(logits, top_k)
        probs = F.softmax(logits, dim=-1)
        probs = cutoff_topp_probs(probs, top_p)

        idx = torch.multinomial(probs, num_samples=1).clone().detach()
        code = idx if code is None else torch.cat([code, idx], axis=1)

    del past
    return code


@torch.no_grad()
def sampling_igpt(model: torch.nn.Module,
                  sos: torch.FloatTensor,
                  top_k: Optional[float] = None,
                  top_p: Optional[float] = None,
                  softmax_temperature: float = 1.0,
                  is_tqdm: bool = True,
                  use_fp16: bool = True,
                  max_seq_len: int = 256) -> torch.LongTensor:
    code = None
    past = None
    pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)

    for cnt, h in enumerate(pbar):
        if code is None:
            code_ = None
            pos_enc_code_ = None
        else:
            code_ = code.clone().detach()
            pos_enc_code_ = get_positional_encoding(code_, mode='1d')
            code_ = code_[:, cnt-1].unsqueeze(-1)
            pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)

        logits, present = model.sampling(sos=sos,
                                         codes=code_,
                                         pos_codes=pos_enc_code_,
                                         use_fp16=use_fp16,
                                         past=past)
        logits = logits.to(dtype=torch.float32)
        logits = logits / softmax_temperature

        present = torch.stack(present).clone().detach()
        if past is None:
            past = [present]
        else:
            past.append(present)

        logits = cutoff_topk_logits(logits, top_k)
        probs = F.softmax(logits, dim=-1)
        probs = cutoff_topp_probs(probs, top_p)

        idx = torch.multinomial(probs, num_samples=1).clone().detach()
        code = idx if code is None else torch.cat([code, idx], axis=1)

    del past
    return code