Spaces:
Build error
Build error
import os | |
import sys | |
import base64 | |
from io import BytesIO | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import torch | |
from torch import nn | |
from fastapi import FastAPI | |
import numpy as np | |
from PIL import Image | |
import clip | |
from dalle.models import Dalle | |
from dalle.utils.utils import clip_score, download | |
print("Loading models...") | |
app = FastAPI() | |
# url = "https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz" | |
# root = os.path.expanduser("~/.cache/minDALLE") | |
# filename = os.path.basename(url) | |
# pathname = filename[: -len(".tar.gz")] | |
# download_target = os.path.join(root, filename) | |
# result_path = os.path.join(root, pathname) | |
# if not os.path.exists(result_path): | |
# result_path = download(url, root) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Dalle.from_pretrained("minDALL-E/1.3B") # This will automatically download the pretrained model. | |
model.to(device=device) | |
# ----------------------------------------------------------- | |
state_dict_ = torch.load('last.ckpt', map_location='cpu') | |
vqgan_stage_dict = model.stage1.state_dict() | |
for name, param in state_dict_['state_dict'].items(): | |
if name not in model.stage1.state_dict().keys(): | |
continue | |
if isinstance(param, nn.parameter.Parameter): | |
param = param.data | |
vqgan_stage_dict[name].copy_(param) | |
model.stage1.load_state_dict(vqgan_stage_dict) | |
# --------------------------------------------------------- | |
# state_dict_dalle = torch.load('dalle_last.ckpt', map_location='cpu') | |
# dalle_stage_dict = model.stage2.state_dict() | |
# | |
# for name, param in state_dict_dalle['state_dict'].items(): | |
# if name[6:] not in model.stage2.state_dict().keys(): | |
# print(name) | |
# continue | |
# if isinstance(param, nn.parameter.Parameter): | |
# param = param.data | |
# dalle_stage_dict[name[6:]].copy_(param) | |
# | |
# model.stage2.load_state_dict(dalle_stage_dict) | |
# model_clip, preprocess_clip = clip.load("ViT-B/32", device=device) | |
# model_clip.to(device=device) | |
print("Models loaded !") | |
def read_root(): | |
return {"minDALL-E!"} | |
def generate(prompt): | |
images = sample(prompt) | |
images = [to_base64(image) for image in images] | |
return {"images": images} | |
def sample(prompt): | |
# Sampling | |
images = ( | |
model.sampling(prompt=prompt, top_k=96, top_p=None, softmax_temperature=1.0, num_candidates=9, device=device) | |
.cpu() | |
.numpy() | |
) | |
images = np.transpose(images, (0, 2, 3, 1)) | |
# CLIP Re-ranking | |
rank = clip_score( | |
prompt=prompt, images=images, model_clip=model_clip, preprocess_clip=preprocess_clip, device=device | |
) | |
images = images[rank] | |
pil_images = [] | |
for i in range(len(images)): | |
im = Image.fromarray((images[i] * 255).astype(np.uint8)) | |
pil_images.append(im) | |
return pil_images | |
def to_base64(pil_image): | |
buffered = BytesIO() | |
pil_image.save(buffered, format="JPEG") | |
return base64.b64encode(buffered.getvalue()) |