Spaces:
Running
on
A10G
Running
on
A10G
tastelikefeet
commited on
Commit
·
de7836d
1
Parent(s):
fdc24bb
first version
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- app.py +401 -0
- bert_tokenizer.py +421 -0
- cldm/cldm.py +617 -0
- cldm/ddim_hacked.py +317 -0
- cldm/embedding_manager.py +165 -0
- cldm/hack.py +111 -0
- cldm/logger.py +76 -0
- cldm/model.py +30 -0
- cldm/recognizer.py +303 -0
- dataset_util.py +77 -0
- example_images/banner.png +0 -0
- example_images/edit1.png +0 -0
- example_images/edit10.png +0 -0
- example_images/edit11.png +0 -0
- example_images/edit12.png +0 -0
- example_images/edit13.png +0 -0
- example_images/edit14.png +0 -0
- example_images/edit2.png +0 -0
- example_images/edit3.png +0 -0
- example_images/edit4.png +0 -0
- example_images/edit5.png +0 -0
- example_images/edit6.png +0 -0
- example_images/edit7.png +0 -0
- example_images/edit8.png +0 -0
- example_images/edit9.png +0 -0
- example_images/gen1.png +0 -0
- example_images/gen10.png +0 -0
- example_images/gen11.png +0 -0
- example_images/gen12.png +0 -0
- example_images/gen13.png +0 -0
- example_images/gen14.png +0 -0
- example_images/gen15.png +0 -0
- example_images/gen16.png +0 -0
- example_images/gen2.png +0 -0
- example_images/gen3.png +0 -0
- example_images/gen4.png +0 -0
- example_images/gen5.png +0 -0
- example_images/gen6.png +0 -0
- example_images/gen7.png +0 -0
- example_images/gen8.png +0 -0
- example_images/gen9.png +0 -0
- example_images/ref1.jpg +0 -0
- example_images/ref10.jpg +0 -0
- example_images/ref11.jpg +0 -0
- example_images/ref12.png +0 -0
- example_images/ref13.jpg +0 -0
- example_images/ref14.png +0 -0
- example_images/ref2.jpg +0 -0
- example_images/ref3.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.ttf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
AnyText: Multilingual Visual Text Generation And Editing
|
3 |
+
Paper: https://arxiv.org/abs/2311.03054
|
4 |
+
Code: https://github.com/tyxsspa/AnyText
|
5 |
+
Copyright (c) Alibaba, Inc. and its affiliates.
|
6 |
+
'''
|
7 |
+
import os
|
8 |
+
from modelscope.pipelines import pipeline
|
9 |
+
import cv2
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
import re
|
13 |
+
from gradio.components import Component
|
14 |
+
from util import check_channels, resize_image, save_images
|
15 |
+
import json
|
16 |
+
|
17 |
+
BBOX_MAX_NUM = 8
|
18 |
+
img_save_folder = 'SaveImages'
|
19 |
+
load_model = True
|
20 |
+
if load_model:
|
21 |
+
inference = pipeline('my-anytext-task', model='damo/cv_anytext_text_generation_editing', model_revision='v1.1.0')
|
22 |
+
|
23 |
+
|
24 |
+
def count_lines(prompt):
|
25 |
+
prompt = prompt.replace('“', '"')
|
26 |
+
prompt = prompt.replace('”', '"')
|
27 |
+
p = '"(.*?)"'
|
28 |
+
strs = re.findall(p, prompt)
|
29 |
+
if len(strs) == 0:
|
30 |
+
strs = [' ']
|
31 |
+
return len(strs)
|
32 |
+
|
33 |
+
|
34 |
+
def generate_rectangles(w, h, n, max_trys=200):
|
35 |
+
img = np.zeros((h, w, 1), dtype=np.uint8)
|
36 |
+
rectangles = []
|
37 |
+
attempts = 0
|
38 |
+
n_pass = 0
|
39 |
+
low_edge = int(max(w, h)*0.3 if n <= 3 else max(w, h)*0.2) # ~150, ~100
|
40 |
+
while attempts < max_trys:
|
41 |
+
rect_w = min(np.random.randint(max((w*0.5)//n, low_edge), w), int(w*0.8))
|
42 |
+
ratio = np.random.uniform(4, 10)
|
43 |
+
rect_h = max(low_edge, int(rect_w/ratio))
|
44 |
+
rect_h = min(rect_h, int(h*0.8))
|
45 |
+
# gen rotate angle
|
46 |
+
rotation_angle = 0
|
47 |
+
rand_value = np.random.rand()
|
48 |
+
if rand_value < 0.7:
|
49 |
+
pass
|
50 |
+
elif rand_value < 0.8:
|
51 |
+
rotation_angle = np.random.randint(0, 40)
|
52 |
+
elif rand_value < 0.9:
|
53 |
+
rotation_angle = np.random.randint(140, 180)
|
54 |
+
else:
|
55 |
+
rotation_angle = np.random.randint(85, 95)
|
56 |
+
# rand position
|
57 |
+
x = np.random.randint(0, w - rect_w)
|
58 |
+
y = np.random.randint(0, h - rect_h)
|
59 |
+
# get vertex
|
60 |
+
rect_pts = cv2.boxPoints(((rect_w/2, rect_h/2), (rect_w, rect_h), rotation_angle))
|
61 |
+
rect_pts = np.int32(rect_pts)
|
62 |
+
# move
|
63 |
+
rect_pts += (x, y)
|
64 |
+
# check boarder
|
65 |
+
if np.any(rect_pts < 0) or np.any(rect_pts[:, 0] >= w) or np.any(rect_pts[:, 1] >= h):
|
66 |
+
attempts += 1
|
67 |
+
continue
|
68 |
+
# check overlap
|
69 |
+
if any(check_overlap_polygon(rect_pts, rp) for rp in rectangles):
|
70 |
+
attempts += 1
|
71 |
+
continue
|
72 |
+
n_pass += 1
|
73 |
+
cv2.fillPoly(img, [rect_pts], 255)
|
74 |
+
rectangles.append(rect_pts)
|
75 |
+
if n_pass == n:
|
76 |
+
break
|
77 |
+
print("attempts:", attempts)
|
78 |
+
if len(rectangles) != n:
|
79 |
+
raise gr.Error(f'Failed in auto generate positions after {attempts} attempts, try again!')
|
80 |
+
return img
|
81 |
+
|
82 |
+
|
83 |
+
def check_overlap_polygon(rect_pts1, rect_pts2):
|
84 |
+
poly1 = cv2.convexHull(rect_pts1)
|
85 |
+
poly2 = cv2.convexHull(rect_pts2)
|
86 |
+
rect1 = cv2.boundingRect(poly1)
|
87 |
+
rect2 = cv2.boundingRect(poly2)
|
88 |
+
if rect1[0] + rect1[2] >= rect2[0] and rect2[0] + rect2[2] >= rect1[0] and rect1[1] + rect1[3] >= rect2[1] and rect2[1] + rect2[3] >= rect1[1]:
|
89 |
+
return True
|
90 |
+
return False
|
91 |
+
|
92 |
+
|
93 |
+
def draw_rects(width, height, rects):
|
94 |
+
img = np.zeros((height, width, 1), dtype=np.uint8)
|
95 |
+
for rect in rects:
|
96 |
+
x1 = int(rect[0] * width)
|
97 |
+
y1 = int(rect[1] * height)
|
98 |
+
w = int(rect[2] * width)
|
99 |
+
h = int(rect[3] * height)
|
100 |
+
x2 = x1 + w
|
101 |
+
y2 = y1 + h
|
102 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), 255, -1)
|
103 |
+
return img
|
104 |
+
|
105 |
+
|
106 |
+
def process(mode, prompt, pos_radio, sort_radio, revise_pos, show_debug, draw_img, rect_img, ref_img, ori_img, img_count, ddim_steps, w, h, strength, cfg_scale, seed, eta, a_prompt, n_prompt, *rect_list):
|
107 |
+
n_lines = count_lines(prompt)
|
108 |
+
# Text Generation
|
109 |
+
if mode == 'gen':
|
110 |
+
# create pos_imgs
|
111 |
+
if pos_radio == 'Manual-draw(手绘)':
|
112 |
+
if draw_img is not None:
|
113 |
+
pos_imgs = 255 - draw_img['image']
|
114 |
+
if 'mask' in draw_img:
|
115 |
+
pos_imgs = pos_imgs.astype(np.float32) + draw_img['mask'][..., 0:3].astype(np.float32)
|
116 |
+
pos_imgs = pos_imgs.clip(0, 255).astype(np.uint8)
|
117 |
+
else:
|
118 |
+
pos_imgs = np.zeros((w, h, 1))
|
119 |
+
elif pos_radio == 'Manual-rect(拖框)':
|
120 |
+
rect_check = rect_list[:BBOX_MAX_NUM]
|
121 |
+
rect_xywh = rect_list[BBOX_MAX_NUM:]
|
122 |
+
checked_rects = []
|
123 |
+
for idx, c in enumerate(rect_check):
|
124 |
+
if c:
|
125 |
+
_xywh = rect_xywh[4*idx:4*(idx+1)]
|
126 |
+
checked_rects += [_xywh]
|
127 |
+
pos_imgs = draw_rects(w, h, checked_rects)
|
128 |
+
elif pos_radio == 'Auto-rand(随机)':
|
129 |
+
pos_imgs = generate_rectangles(w, h, n_lines, max_trys=500)
|
130 |
+
# Text Editing
|
131 |
+
elif mode == 'edit':
|
132 |
+
revise_pos = False # disable pos revise in edit mode
|
133 |
+
if ref_img is None or ori_img is None:
|
134 |
+
raise gr.Error('No reference image, please upload one for edit!')
|
135 |
+
edit_image = ori_img.clip(1, 255) # for mask reason
|
136 |
+
edit_image = check_channels(edit_image)
|
137 |
+
edit_image = resize_image(edit_image, max_length=768)
|
138 |
+
h, w = edit_image.shape[:2]
|
139 |
+
if isinstance(ref_img, dict) and 'mask' in ref_img and ref_img['mask'].mean() > 0:
|
140 |
+
pos_imgs = 255 - edit_image
|
141 |
+
edit_mask = cv2.resize(ref_img['mask'][..., 0:3], (w, h))
|
142 |
+
pos_imgs = pos_imgs.astype(np.float32) + edit_mask.astype(np.float32)
|
143 |
+
pos_imgs = pos_imgs.clip(0, 255).astype(np.uint8)
|
144 |
+
else:
|
145 |
+
if isinstance(ref_img, dict) and 'image' in ref_img:
|
146 |
+
ref_img = ref_img['image']
|
147 |
+
pos_imgs = 255 - ref_img # example input ref_img is used as pos
|
148 |
+
cv2.imwrite('pos_imgs.png', 255-pos_imgs[..., ::-1])
|
149 |
+
params = {
|
150 |
+
"sort_priority": sort_radio,
|
151 |
+
"show_debug": show_debug,
|
152 |
+
"revise_pos": revise_pos,
|
153 |
+
"image_count": img_count,
|
154 |
+
"ddim_steps": ddim_steps,
|
155 |
+
"image_width": w,
|
156 |
+
"image_height": h,
|
157 |
+
"strength": strength,
|
158 |
+
"cfg_scale": cfg_scale,
|
159 |
+
"eta": eta,
|
160 |
+
"a_prompt": a_prompt,
|
161 |
+
"n_prompt": n_prompt
|
162 |
+
}
|
163 |
+
input_data = {
|
164 |
+
"prompt": prompt,
|
165 |
+
"seed": seed,
|
166 |
+
"draw_pos": pos_imgs,
|
167 |
+
"ori_image": ori_img,
|
168 |
+
}
|
169 |
+
results, rtn_code, rtn_warning, debug_info = inference(input_data, mode=mode, **params)
|
170 |
+
if rtn_code >= 0:
|
171 |
+
# save_images(results, img_save_folder)
|
172 |
+
# print(f'Done, result images are saved in: {img_save_folder}')
|
173 |
+
if rtn_warning:
|
174 |
+
gr.Warning(rtn_warning)
|
175 |
+
else:
|
176 |
+
raise gr.Error(rtn_warning)
|
177 |
+
return results, gr.Markdown(debug_info, visible=show_debug)
|
178 |
+
|
179 |
+
|
180 |
+
def create_canvas(w=512, h=512, c=3, line=5):
|
181 |
+
image = np.full((h, w, c), 200, dtype=np.uint8)
|
182 |
+
for i in range(h):
|
183 |
+
if i % (w//line) == 0:
|
184 |
+
image[i, :, :] = 150
|
185 |
+
for j in range(w):
|
186 |
+
if j % (w//line) == 0:
|
187 |
+
image[:, j, :] = 150
|
188 |
+
image[h//2-8:h//2+8, w//2-8:w//2+8, :] = [200, 0, 0]
|
189 |
+
return image
|
190 |
+
|
191 |
+
|
192 |
+
def resize_w(w, img1, img2):
|
193 |
+
if isinstance(img2, dict):
|
194 |
+
img2 = img2['image']
|
195 |
+
return [cv2.resize(img1, (w, img1.shape[0])), cv2.resize(img2, (w, img2.shape[0]))]
|
196 |
+
|
197 |
+
|
198 |
+
def resize_h(h, img1, img2):
|
199 |
+
if isinstance(img2, dict):
|
200 |
+
img2 = img2['image']
|
201 |
+
return [cv2.resize(img1, (img1.shape[1], h)), cv2.resize(img2, (img2.shape[1], h))]
|
202 |
+
|
203 |
+
|
204 |
+
is_t2i = 'true'
|
205 |
+
block = gr.Blocks(css='style.css', theme=gr.themes.Soft()).queue()
|
206 |
+
|
207 |
+
with open('javascript/bboxHint.js', 'r') as file:
|
208 |
+
value = file.read()
|
209 |
+
escaped_value = json.dumps(value)
|
210 |
+
|
211 |
+
with block:
|
212 |
+
block.load(fn=None,
|
213 |
+
_js=f"""() => {{
|
214 |
+
const script = document.createElement("script");
|
215 |
+
const text = document.createTextNode({escaped_value});
|
216 |
+
script.appendChild(text);
|
217 |
+
document.head.appendChild(script);
|
218 |
+
}}""")
|
219 |
+
gr.HTML('<div style="text-align: center; margin: 20px auto;"> \
|
220 |
+
<img id="banner" src="https://modelscope.cn/api/v1/studio/damo/studio_anytext/repo?Revision=master&FilePath=example_images/banner.png&View=true" alt="anytext"> <br> \
|
221 |
+
[<a href="https://arxiv.org/abs/2311.03054" style="color:blue; font-size:18px;">arXiv</a>] \
|
222 |
+
[<a href="https://github.com/tyxsspa/AnyText" style="color:blue; font-size:18px;">Code</a>] \
|
223 |
+
[<a href="https://modelscope.cn/models/damo/cv_anytext_text_generation_editing/summary" style="color:blue; font-size:18px;">ModelScope</a>]\
|
224 |
+
version: 1.1.0 </div>')
|
225 |
+
with gr.Row(variant='compact'):
|
226 |
+
with gr.Column():
|
227 |
+
with gr.Accordion('🕹Instructions(说明)', open=False,):
|
228 |
+
with gr.Tabs():
|
229 |
+
with gr.Tab("English"):
|
230 |
+
gr.Markdown('<span style="color:navy;font-size:20px">Run Examples</span>')
|
231 |
+
gr.Markdown('<span style="color:black;font-size:16px">AnyText has two modes: Text Generation and Text Editing, and we provides a variety of examples. Select one, click on [Run!] button to run.</span>')
|
232 |
+
gr.Markdown('<span style="color:gray;font-size:12px">Please note, before running examples, ensure the manual draw area is empty, otherwise may get wrong results. Additionally, different examples use \
|
233 |
+
different parameters (such as resolution, seed, etc.). When generate your own, please pay attention to the parameter changes, or refresh the page to restore the default parameters.</span>')
|
234 |
+
gr.Markdown('<span style="color:navy;font-size:20px">Text Generation</span>')
|
235 |
+
gr.Markdown('<span style="color:black;font-size:16px">Enter the textual description (in Chinese or English) of the image you want to generate in [Prompt]. Each text line that needs to be generated should be \
|
236 |
+
enclosed in double quotes. Then, manually draw the specified position for each text line to generate the image.</span>\
|
237 |
+
<span style="color:red;font-size:16px">The drawing of text positions is crucial to the quality of the resulting image</span>, \
|
238 |
+
<span style="color:black;font-size:16px">please do not draw too casually or too small. The number of positions should match the number of text lines, and the size of each position should be matched \
|
239 |
+
as closely as possible to the length or width of the corresponding text line. If [Manual-draw] is inconvenient, you can try dragging rectangles [Manual-rect] or random positions [Auto-rand].</span>')
|
240 |
+
gr.Markdown('<span style="color:gray;font-size:12px">When generating multiple lines, each position is matched with the text line according to a certain rule. The [Sort Position] option is used to \
|
241 |
+
determine whether to prioritize sorting from top to bottom or from left to right. You can open the [Show Debug] option in the parameter settings to observe the text position and glyph image \
|
242 |
+
in the result. You can also select the [Revise Position] which uses the bounding box of the rendered text as the revised position. However, it is occasionally found that the creativity of the \
|
243 |
+
generated text is slightly lower using this method.</span>')
|
244 |
+
gr.Markdown('<span style="color:navy;font-size:20px">Text Editing</span>')
|
245 |
+
gr.Markdown('<span style="color:black;font-size:16px">Please upload an image in [Ref] as a reference image, then adjust the brush size, and mark the area(s) to be edited. Input the textual description and \
|
246 |
+
the new text to be modified in [Prompt], then generate the image.</span>')
|
247 |
+
gr.Markdown('<span style="color:gray;font-size:12px">The reference image can be of any resolution, but it will be internally processed with a limit that the longer side cannot exceed 768 pixels, and the \
|
248 |
+
width and height will both be scaled to multiples of 64.</span>')
|
249 |
+
with gr.Tab("简体中文"):
|
250 |
+
gr.Markdown('<span style="color:navy;font-size:20px">运行示例</span>')
|
251 |
+
gr.Markdown('<span style="color:black;font-size:16px">AnyText有两种运行模式:文字生成和文字编辑,每种模式下提供了丰富的示例,选择一个,点击[Run!]即可。</span>')
|
252 |
+
gr.Markdown('<span style="color:gray;font-size:12px">请注意,运行示例前确保手绘位置区域是空的,防止影响示例结果,另外不同示例使用不同的参数(如分辨率,种子数等),如果要自行生成时,请留意参数变化,或刷新页面恢复到默认参数。</span>')
|
253 |
+
gr.Markdown('<span style="color:navy;font-size:20px">文字生成</span>')
|
254 |
+
gr.Markdown('<span style="color:black;font-size:16px">在Prompt中输入描述提示词(支持中英文),需要生成的每一行文字用双引号包裹,然后依次手绘指定每行文字的位置,生成图片。</span>\
|
255 |
+
<span style="color:red;font-size:16px">文字位置的绘制对成图质量很关键</span>, \
|
256 |
+
<span style="color:black;font-size:16px">请不要画的太随意或太小,位置的数量要与文字行数量一致,每个位置的尺寸要与对应的文字行的长短或宽高尽量匹配。如果手绘(Manual-draw)不方便,\
|
257 |
+
可以尝试拖框矩形(Manual-rect)或随机生成(Auto-rand)。</span>')
|
258 |
+
gr.Markdown('<span style="color:gray;font-size:12px">多行生成时,每个位置按照一定规则排序后与文字行做对应,Sort Position选项用于确定排序时优先从上到下还是从左到右。\
|
259 |
+
可以在参数设置中打开Show Debug选项,在结果图像中观察文字位置和字形图。也可以勾选Revise Position选项,这样会用渲染文字的外接矩形作为修正后的位置,不过偶尔发现这样生成的文字创造性略低。</span>')
|
260 |
+
gr.Markdown('<span style="color:navy;font-size:20px">文字编辑</span>')
|
261 |
+
gr.Markdown('<span style="color:black;font-size:16px">请上传一张待编辑的图片作为参考图(Ref),然后调整笔触大小后,在参考图上涂抹要编辑的位置,在Prompt中输入描述提示词和要修改的文字内容,生成图片。</span>')
|
262 |
+
gr.Markdown('<span style="color:gray;font-size:12px">参考图可以为任意分辨率,但内部处理时会限制长边不能超过768,并且宽高都被缩放为64的整数倍。</span>')
|
263 |
+
with gr.Accordion('🛠Parameters(参数)', open=False):
|
264 |
+
with gr.Row(variant='compact'):
|
265 |
+
img_count = gr.Slider(label="Image Count(图片��)", minimum=1, maximum=12, value=4, step=1)
|
266 |
+
ddim_steps = gr.Slider(label="Steps(步数)", minimum=1, maximum=100, value=20, step=1)
|
267 |
+
with gr.Row(variant='compact'):
|
268 |
+
image_width = gr.Slider(label="Image Width(宽度)", minimum=256, maximum=768, value=512, step=64)
|
269 |
+
image_height = gr.Slider(label="Image Height(高度)", minimum=256, maximum=768, value=512, step=64)
|
270 |
+
with gr.Row(variant='compact'):
|
271 |
+
strength = gr.Slider(label="Strength(控制力度)", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
272 |
+
cfg_scale = gr.Slider(label="CFG-Scale(CFG强度)", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
273 |
+
with gr.Row(variant='compact'):
|
274 |
+
seed = gr.Slider(label="Seed(种子数)", minimum=-1, maximum=99999999, step=1, randomize=False, value=-1)
|
275 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
276 |
+
with gr.Row(variant='compact'):
|
277 |
+
show_debug = gr.Checkbox(label='Show Debug(调试信息)', value=False)
|
278 |
+
gr.Markdown('<span style="color:silver;font-size:12px">whether show glyph image and debug information in the result(是否在结果中显示glyph图以及调试信息)</span>')
|
279 |
+
a_prompt = gr.Textbox(label="Added Prompt(附加提示词)", value='best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks')
|
280 |
+
n_prompt = gr.Textbox(label="Negative Prompt(负向提示词)", value='low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture')
|
281 |
+
prompt = gr.Textbox(label="Prompt(提示词)")
|
282 |
+
with gr.Tabs() as tab_modes:
|
283 |
+
with gr.Tab("🖼Text Generation(文字生成)", elem_id='MD-tab-t2i') as mode_gen:
|
284 |
+
pos_radio = gr.Radio(["Manual-draw(手绘)", "Manual-rect(拖框)", "Auto-rand(随机)"], value='Manual-draw(手绘)', label="Pos-Method(位置方式)", info="choose a method to specify text positions(选择方法用于指定文字位置).")
|
285 |
+
with gr.Row():
|
286 |
+
sort_radio = gr.Radio(["↕", "↔"], value='↕', label="Sort Position(位置排序)", info="position sorting priority(位置排序时的优先级)")
|
287 |
+
revise_pos = gr.Checkbox(label='Revise Position(修正位置)', value=False)
|
288 |
+
# gr.Markdown('<span style="color:silver;font-size:12px">try to revise according to text\'s bounding rectangle(尝试通过渲染后的文字行的外接矩形框修正位置)</span>')
|
289 |
+
with gr.Row(variant='compact'):
|
290 |
+
rect_cb_list: list[Component] = []
|
291 |
+
rect_xywh_list: list[Component] = []
|
292 |
+
for i in range(BBOX_MAX_NUM):
|
293 |
+
e = gr.Checkbox(label=f'{i}', value=False, visible=False, min_width='10')
|
294 |
+
x = gr.Slider(label='x', value=0.4, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-t2i-{i}-x', visible=False)
|
295 |
+
y = gr.Slider(label='y', value=0.4, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-t2i-{i}-y', visible=False)
|
296 |
+
w = gr.Slider(label='w', value=0.2, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-t2i-{i}-w', visible=False)
|
297 |
+
h = gr.Slider(label='h', value=0.2, minimum=0.0, maximum=1.0, step=0.0001, elem_id=f'MD-t2i-{i}-h', visible=False)
|
298 |
+
x.change(fn=None, inputs=x, outputs=x, _js=f'v => onBoxChange({is_t2i}, {i}, "x", v)', show_progress=False, queue=False)
|
299 |
+
y.change(fn=None, inputs=y, outputs=y, _js=f'v => onBoxChange({is_t2i}, {i}, "y", v)', show_progress=False, queue=False)
|
300 |
+
w.change(fn=None, inputs=w, outputs=w, _js=f'v => onBoxChange({is_t2i}, {i}, "w", v)', show_progress=False, queue=False)
|
301 |
+
h.change(fn=None, inputs=h, outputs=h, _js=f'v => onBoxChange({is_t2i}, {i}, "h", v)', show_progress=False, queue=False)
|
302 |
+
|
303 |
+
e.change(fn=None, inputs=e, outputs=e, _js=f'e => onBoxEnableClick({is_t2i}, {i}, e)', queue=False)
|
304 |
+
rect_cb_list.extend([e])
|
305 |
+
rect_xywh_list.extend([x, y, w, h])
|
306 |
+
|
307 |
+
rect_img = gr.Image(value=create_canvas(), label="Rext Position(方框位置)", elem_id="MD-bbox-rect-t2i", show_label=False, visible=False)
|
308 |
+
draw_img = gr.Image(value=create_canvas(), label="Draw Position(绘制位置)", visible=True, tool='sketch', show_label=False, brush_radius=60)
|
309 |
+
|
310 |
+
def re_draw():
|
311 |
+
return [gr.Image(value=create_canvas(), tool='sketch'), gr.Slider(value=512), gr.Slider(value=512)]
|
312 |
+
draw_img.clear(re_draw, None, [draw_img, image_width, image_height])
|
313 |
+
image_width.release(resize_w, [image_width, rect_img, draw_img], [rect_img, draw_img])
|
314 |
+
image_height.release(resize_h, [image_height, rect_img, draw_img], [rect_img, draw_img])
|
315 |
+
|
316 |
+
def change_options(selected_option):
|
317 |
+
return [gr.Checkbox(visible=selected_option == 'Manual-rect(拖框)')] * BBOX_MAX_NUM + \
|
318 |
+
[gr.Image(visible=selected_option == 'Manual-rect(拖框)'),
|
319 |
+
gr.Image(visible=selected_option == 'Manual-draw(手绘)'),
|
320 |
+
gr.Radio(visible=selected_option != 'Auto-rand(随机)'),
|
321 |
+
gr.Checkbox(value=selected_option == 'Auto-rand(随机)')]
|
322 |
+
pos_radio.change(change_options, pos_radio, rect_cb_list + [rect_img, draw_img, sort_radio, revise_pos], show_progress=False, queue=False)
|
323 |
+
with gr.Row():
|
324 |
+
gr.Markdown("")
|
325 |
+
run_gen = gr.Button(value="Run(运行)!", scale=0.3, elem_classes='run')
|
326 |
+
gr.Markdown("")
|
327 |
+
|
328 |
+
def exp_gen_click():
|
329 |
+
return [gr.Slider(value=512), gr.Slider(value=512)] # all examples are 512x512, refresh draw_img
|
330 |
+
exp_gen = gr.Examples(
|
331 |
+
[
|
332 |
+
['一只浣熊站在黑板前,上面写着"深度学习"', "example_images/gen1.png", "Manual-draw(手绘)", "↕", False, 4, 81808278],
|
333 |
+
['一个儿童蜡笔画,森林里有一个可爱的蘑菇形状的房子,标题是"森林小屋"', "example_images/gen16.png", "Manual-draw(手绘)", "↕", False, 4, 40173333],
|
334 |
+
['一个精美设计的logo,画的是一个黑白风格的厨师,带着厨师帽,logo下方写着“深夜食堂”', "example_images/gen14.png", "Manual-draw(手绘)", "↕", False, 4, 6970544],
|
335 |
+
['photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream', "example_images/gen9.png", "Manual-draw(手绘)", "↕", False, 4, 66273235],
|
336 |
+
['一张户外雪地靴的电商广告,上面写着 “双12大促!”,“立减50”,“加绒加厚”,“穿脱方便”,“温暖24小时送达”, “包邮”,高级设计感,精美构图', "example_images/gen15.png", "Manual-draw(手绘)", "↕", False, 4, 66980376],
|
337 |
+
['Sign on the clean building that reads "科学" and "과학" and "ステップ" and "SCIENCE"', "example_images/gen6.png", "Manual-draw(手绘)", "↕", True, 4, 13246309],
|
338 |
+
['一个精致的马克杯,上面雕刻着一首中国古诗,内容是 "花落知多少" "夜来风雨声" "处处闻啼鸟" "春眠不觉晓"', "example_images/gen3.png", "Manual-draw(手绘)", "↔", False, 4, 60358279],
|
339 |
+
['A delicate square cake, cream and fruit, with "CHEERS" "to the" and "GRADUATE" written in chocolate', "example_images/gen8.png", "Manual-draw(手绘)", "↕", False, 4, 93424638],
|
340 |
+
['一件精美的毛衣,上面有针织的文字:"通义丹青"', "example_images/gen4.png", "Manual-draw(手绘)", "↕", False, 4, 48769450],
|
341 |
+
['一个双肩包的特写照,上面用针织文字写着”为了无法“ ”计算的价值“', "example_images/gen12.png", "Manual-draw(手绘)", "↕", False, 4, 35552323],
|
342 |
+
['A nice drawing in pencil of Michael Jackson, with the words "Micheal" and "Jackson" written on it', "example_images/gen7.png", "Manual-draw(手绘)", "↕", False, 4, 83866922],
|
343 |
+
['一个漂亮的蜡笔画,有行星,宇航员,还有宇宙飞船,上面写的是"去火星旅行", "王小明", "11月1日"', "example_images/gen5.png", "Manual-draw(手绘)", "↕", False, 4, 42328250],
|
344 |
+
['一个装饰华丽的蛋糕,上面用奶油写着“阿里云”和"APSARA"', "example_images/gen13.png", "Manual-draw(手绘)", "↕", False, 4, 62357019],
|
345 |
+
['一张关于墙上的彩色涂鸦艺术的摄影作品,上面写着“人工智能" 和 "神经网络"', "example_images/gen10.png", "Manual-draw(手绘)", "↕", False, 4, 64722007],
|
346 |
+
['一枚中国古代铜钱, 上面的文字是 "康" "寶" "通" "熙"', "example_images/gen2.png", "Manual-draw(手绘)", "↕", False, 4, 24375031],
|
347 |
+
['a well crafted ice sculpture that made with "Happy" and "Holidays". Dslr photo, perfect illumination', "example_images/gen11.png", "Manual-draw(手绘)", "↕", True, 4, 64901362],
|
348 |
+
],
|
349 |
+
[prompt, draw_img, pos_radio, sort_radio, revise_pos, img_count, seed],
|
350 |
+
examples_per_page=5,
|
351 |
+
)
|
352 |
+
exp_gen.dataset.click(exp_gen_click, None, [image_width, image_height])
|
353 |
+
|
354 |
+
with gr.Tab("🎨Text Editing(文字编辑)") as mode_edit:
|
355 |
+
with gr.Row(variant='compact'):
|
356 |
+
ref_img = gr.Image(label='Ref(参考图)', source='upload')
|
357 |
+
ori_img = gr.Image(label='Ori(原图)')
|
358 |
+
|
359 |
+
def upload_ref(x):
|
360 |
+
return [gr.Image(type="numpy", brush_radius=60, tool='sketch'),
|
361 |
+
gr.Image(value=x)]
|
362 |
+
|
363 |
+
def clear_ref(x):
|
364 |
+
return gr.Image(source='upload', tool=None)
|
365 |
+
ref_img.upload(upload_ref, ref_img, [ref_img, ori_img])
|
366 |
+
ref_img.clear(clear_ref, ref_img, ref_img)
|
367 |
+
with gr.Row():
|
368 |
+
gr.Markdown("")
|
369 |
+
run_edit = gr.Button(value="Run(运行)!", scale=0.3, elem_classes='run')
|
370 |
+
gr.Markdown("")
|
371 |
+
gr.Examples(
|
372 |
+
[
|
373 |
+
['精美的书法作品,上面写着“志” “存” “高” ”远“', "example_images/ref10.jpg", "example_images/edit10.png", 4, 98053044],
|
374 |
+
['一个表情包,小猪说 "下班"', "example_images/ref2.jpg", "example_images/edit2.png", 2, 43304008],
|
375 |
+
['Characters written in chalk on the blackboard that says "DADDY"', "example_images/ref8.jpg", "example_images/edit8.png", 4, 73556391],
|
376 |
+
['一个中国古代铜钱,上面写着"乾" "隆"', "example_images/ref12.png", "example_images/edit12.png", 4, 89159482],
|
377 |
+
['黑板上写着"Here"', "example_images/ref11.jpg", "example_images/edit11.png", 2, 15353513],
|
378 |
+
['A letter picture that says "THER"', "example_images/ref6.jpg", "example_images/edit6.png", 4, 72321415],
|
379 |
+
['一堆水果, 中间写着“UIT”', "example_images/ref13.jpg", "example_images/edit13.png", 4, 54263567],
|
380 |
+
['一个漫画,上面写着" "', "example_images/ref14.png", "example_images/edit14.png", 4, 94081527],
|
381 |
+
['一个黄色标志牌,上边写着"不要" 和 "大意"', "example_images/ref3.jpg", "example_images/edit3.png", 2, 64010349],
|
382 |
+
['A cake with colorful characters that reads "EVERYDAY"', "example_images/ref7.jpg", "example_images/edit7.png", 4, 8943410],
|
383 |
+
['一个青铜鼎,上面写着" "和" "', "example_images/ref4.jpg", "example_images/edit4.png", 4, 71139289],
|
384 |
+
['一个建筑物前面的字母标牌, 上面写着 " "', "example_images/ref5.jpg", "example_images/edit5.png", 4, 50416289],
|
385 |
+
],
|
386 |
+
[prompt, ori_img, ref_img, img_count, seed],
|
387 |
+
examples_per_page=5,
|
388 |
+
)
|
389 |
+
with gr.Column():
|
390 |
+
result_gallery = gr.Gallery(label='Result(结果)', show_label=True, preview=True, columns=2, allow_preview=True, height=600)
|
391 |
+
result_info = gr.Markdown('', visible=False)
|
392 |
+
ips = [prompt, pos_radio, sort_radio, revise_pos, show_debug, draw_img, rect_img, ref_img, ori_img, img_count, ddim_steps, image_width, image_height, strength, cfg_scale, seed, eta, a_prompt, n_prompt, *(rect_cb_list+rect_xywh_list)]
|
393 |
+
run_gen.click(fn=process, inputs=[gr.State('gen')] + ips, outputs=[result_gallery, result_info])
|
394 |
+
run_edit.click(fn=process, inputs=[gr.State('edit')] + ips, outputs=[result_gallery, result_info])
|
395 |
+
|
396 |
+
block.launch(
|
397 |
+
server_name='0.0.0.0' if os.getenv('GRADIO_LISTEN', '') != '' else "127.0.0.1",
|
398 |
+
share=False,
|
399 |
+
root_path=f"/{os.getenv('GRADIO_PROXY_PATH')}" if os.getenv('GRADIO_PROXY_PATH') else ""
|
400 |
+
)
|
401 |
+
# block.launch(server_name='0.0.0.0')
|
bert_tokenizer.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The Google AI Language Team Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Tokenization classes."""
|
15 |
+
|
16 |
+
from __future__ import absolute_import, division, print_function
|
17 |
+
import collections
|
18 |
+
import re
|
19 |
+
import unicodedata
|
20 |
+
|
21 |
+
import six
|
22 |
+
|
23 |
+
|
24 |
+
def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
|
25 |
+
"""Checks whether the casing config is consistent with the checkpoint name."""
|
26 |
+
|
27 |
+
# The casing has to be passed in by the user and there is no explicit check
|
28 |
+
# as to whether it matches the checkpoint. The casing information probably
|
29 |
+
# should have been stored in the bert_config.json file, but it's not, so
|
30 |
+
# we have to heuristically detect it to validate.
|
31 |
+
|
32 |
+
if not init_checkpoint:
|
33 |
+
return
|
34 |
+
|
35 |
+
m = re.match('^.*?([A-Za-z0-9_-]+)/bert_model.ckpt', init_checkpoint)
|
36 |
+
if m is None:
|
37 |
+
return
|
38 |
+
|
39 |
+
model_name = m.group(1)
|
40 |
+
|
41 |
+
lower_models = [
|
42 |
+
'uncased_L-24_H-1024_A-16', 'uncased_L-12_H-768_A-12',
|
43 |
+
'multilingual_L-12_H-768_A-12', 'chinese_L-12_H-768_A-12'
|
44 |
+
]
|
45 |
+
|
46 |
+
cased_models = [
|
47 |
+
'cased_L-12_H-768_A-12', 'cased_L-24_H-1024_A-16',
|
48 |
+
'multi_cased_L-12_H-768_A-12'
|
49 |
+
]
|
50 |
+
|
51 |
+
is_bad_config = False
|
52 |
+
if model_name in lower_models and not do_lower_case:
|
53 |
+
is_bad_config = True
|
54 |
+
actual_flag = 'False'
|
55 |
+
case_name = 'lowercased'
|
56 |
+
opposite_flag = 'True'
|
57 |
+
|
58 |
+
if model_name in cased_models and do_lower_case:
|
59 |
+
is_bad_config = True
|
60 |
+
actual_flag = 'True'
|
61 |
+
case_name = 'cased'
|
62 |
+
opposite_flag = 'False'
|
63 |
+
|
64 |
+
if is_bad_config:
|
65 |
+
raise ValueError(
|
66 |
+
'You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. '
|
67 |
+
'However, `%s` seems to be a %s model, so you '
|
68 |
+
'should pass in `--do_lower_case=%s` so that the fine-tuning matches '
|
69 |
+
'how the model was pre-training. If this error is wrong, please '
|
70 |
+
'just comment out this check.' %
|
71 |
+
(actual_flag, init_checkpoint, model_name, case_name,
|
72 |
+
opposite_flag))
|
73 |
+
|
74 |
+
|
75 |
+
def convert_to_unicode(text):
|
76 |
+
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
|
77 |
+
if six.PY3:
|
78 |
+
if isinstance(text, str):
|
79 |
+
return text
|
80 |
+
elif isinstance(text, bytes):
|
81 |
+
return text.decode('utf-8', 'ignore')
|
82 |
+
else:
|
83 |
+
raise ValueError('Unsupported string type: %s' % (type(text)))
|
84 |
+
elif six.PY2:
|
85 |
+
if isinstance(text, str):
|
86 |
+
return text.decode('utf-8', 'ignore')
|
87 |
+
elif isinstance(text, unicode):
|
88 |
+
return text
|
89 |
+
else:
|
90 |
+
raise ValueError('Unsupported string type: %s' % (type(text)))
|
91 |
+
else:
|
92 |
+
raise ValueError('Not running on Python2 or Python 3?')
|
93 |
+
|
94 |
+
|
95 |
+
def printable_text(text):
|
96 |
+
"""Returns text encoded in a way suitable for print or `tf.logging`."""
|
97 |
+
|
98 |
+
# These functions want `str` for both Python2 and Python3, but in one case
|
99 |
+
# it's a Unicode string and in the other it's a byte string.
|
100 |
+
if six.PY3:
|
101 |
+
if isinstance(text, str):
|
102 |
+
return text
|
103 |
+
elif isinstance(text, bytes):
|
104 |
+
return text.decode('utf-8', 'ignore')
|
105 |
+
else:
|
106 |
+
raise ValueError('Unsupported string type: %s' % (type(text)))
|
107 |
+
elif six.PY2:
|
108 |
+
if isinstance(text, str):
|
109 |
+
return text
|
110 |
+
elif isinstance(text, unicode):
|
111 |
+
return text.encode('utf-8')
|
112 |
+
else:
|
113 |
+
raise ValueError('Unsupported string type: %s' % (type(text)))
|
114 |
+
else:
|
115 |
+
raise ValueError('Not running on Python2 or Python 3?')
|
116 |
+
|
117 |
+
|
118 |
+
def load_vocab(vocab_file):
|
119 |
+
"""Loads a vocabulary file into a dictionary."""
|
120 |
+
vocab = collections.OrderedDict()
|
121 |
+
index = 0
|
122 |
+
with open(vocab_file, 'r', encoding='utf-8') as reader:
|
123 |
+
while True:
|
124 |
+
token = convert_to_unicode(reader.readline())
|
125 |
+
if not token:
|
126 |
+
break
|
127 |
+
token = token.strip()
|
128 |
+
vocab[token] = index
|
129 |
+
index += 1
|
130 |
+
return vocab
|
131 |
+
|
132 |
+
|
133 |
+
def convert_by_vocab(vocab, items):
|
134 |
+
"""Converts a sequence of [tokens|ids] using the vocab."""
|
135 |
+
output = []
|
136 |
+
for item in items:
|
137 |
+
output.append(vocab[item])
|
138 |
+
return output
|
139 |
+
|
140 |
+
|
141 |
+
def convert_tokens_to_ids(vocab, tokens):
|
142 |
+
return convert_by_vocab(vocab, tokens)
|
143 |
+
|
144 |
+
|
145 |
+
def convert_ids_to_tokens(inv_vocab, ids):
|
146 |
+
return convert_by_vocab(inv_vocab, ids)
|
147 |
+
|
148 |
+
|
149 |
+
def whitespace_tokenize(text):
|
150 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
151 |
+
text = text.strip()
|
152 |
+
if not text:
|
153 |
+
return []
|
154 |
+
tokens = text.split()
|
155 |
+
return tokens
|
156 |
+
|
157 |
+
|
158 |
+
class FullTokenizer(object):
|
159 |
+
"""Runs end-to-end tokenziation."""
|
160 |
+
|
161 |
+
def __init__(self, vocab_file, do_lower_case=True):
|
162 |
+
self.vocab = load_vocab(vocab_file)
|
163 |
+
self.inv_vocab = {v: k for k, v in self.vocab.items()}
|
164 |
+
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
|
165 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
|
166 |
+
|
167 |
+
def tokenize(self, text):
|
168 |
+
split_tokens = []
|
169 |
+
for token in self.basic_tokenizer.tokenize(text):
|
170 |
+
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
171 |
+
split_tokens.append(sub_token)
|
172 |
+
|
173 |
+
return split_tokens
|
174 |
+
|
175 |
+
def convert_tokens_to_ids(self, tokens):
|
176 |
+
return convert_by_vocab(self.vocab, tokens)
|
177 |
+
|
178 |
+
def convert_ids_to_tokens(self, ids):
|
179 |
+
return convert_by_vocab(self.inv_vocab, ids)
|
180 |
+
|
181 |
+
@staticmethod
|
182 |
+
def convert_tokens_to_string(tokens, clean_up_tokenization_spaces=True):
|
183 |
+
""" Converts a sequence of tokens (string) in a single string. """
|
184 |
+
|
185 |
+
def clean_up_tokenization(out_string):
|
186 |
+
""" Clean up a list of simple English tokenization artifacts
|
187 |
+
like spaces before punctuations and abreviated forms.
|
188 |
+
"""
|
189 |
+
out_string = (
|
190 |
+
out_string.replace(' .', '.').replace(' ?', '?').replace(
|
191 |
+
' !', '!').replace(' ,', ',').replace(" ' ", "'").replace(
|
192 |
+
" n't", "n't").replace(" 'm", "'m").replace(
|
193 |
+
" 's", "'s").replace(" 've",
|
194 |
+
"'ve").replace(" 're", "'re"))
|
195 |
+
return out_string
|
196 |
+
|
197 |
+
text = ' '.join(tokens).replace(' ##', '').strip()
|
198 |
+
if clean_up_tokenization_spaces:
|
199 |
+
clean_text = clean_up_tokenization(text)
|
200 |
+
return clean_text
|
201 |
+
else:
|
202 |
+
return text
|
203 |
+
|
204 |
+
def vocab_size(self):
|
205 |
+
return len(self.vocab)
|
206 |
+
|
207 |
+
|
208 |
+
class BasicTokenizer(object):
|
209 |
+
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
|
210 |
+
|
211 |
+
def __init__(self, do_lower_case=True):
|
212 |
+
"""Constructs a BasicTokenizer.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
do_lower_case: Whether to lower case the input.
|
216 |
+
"""
|
217 |
+
self.do_lower_case = do_lower_case
|
218 |
+
|
219 |
+
def tokenize(self, text):
|
220 |
+
"""Tokenizes a piece of text."""
|
221 |
+
text = convert_to_unicode(text)
|
222 |
+
text = self._clean_text(text)
|
223 |
+
|
224 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
225 |
+
# models. This is also applied to the English models now, but it doesn't
|
226 |
+
# matter since the English models were not trained on any Chinese data
|
227 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
228 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
229 |
+
# words in the English Wikipedia.).
|
230 |
+
text = self._tokenize_chinese_chars(text)
|
231 |
+
|
232 |
+
orig_tokens = whitespace_tokenize(text)
|
233 |
+
split_tokens = []
|
234 |
+
for token in orig_tokens:
|
235 |
+
if self.do_lower_case:
|
236 |
+
token = token.lower()
|
237 |
+
token = self._run_strip_accents(token)
|
238 |
+
split_tokens.extend(self._run_split_on_punc(token))
|
239 |
+
|
240 |
+
output_tokens = whitespace_tokenize(' '.join(split_tokens))
|
241 |
+
return output_tokens
|
242 |
+
|
243 |
+
def _run_strip_accents(self, text):
|
244 |
+
"""Strips accents from a piece of text."""
|
245 |
+
text = unicodedata.normalize('NFD', text)
|
246 |
+
output = []
|
247 |
+
for char in text:
|
248 |
+
cat = unicodedata.category(char)
|
249 |
+
if cat == 'Mn':
|
250 |
+
continue
|
251 |
+
output.append(char)
|
252 |
+
return ''.join(output)
|
253 |
+
|
254 |
+
def _run_split_on_punc(self, text):
|
255 |
+
"""Splits punctuation on a piece of text."""
|
256 |
+
chars = list(text)
|
257 |
+
i = 0
|
258 |
+
start_new_word = True
|
259 |
+
output = []
|
260 |
+
while i < len(chars):
|
261 |
+
char = chars[i]
|
262 |
+
if _is_punctuation(char):
|
263 |
+
output.append([char])
|
264 |
+
start_new_word = True
|
265 |
+
else:
|
266 |
+
if start_new_word:
|
267 |
+
output.append([])
|
268 |
+
start_new_word = False
|
269 |
+
output[-1].append(char)
|
270 |
+
i += 1
|
271 |
+
|
272 |
+
return [''.join(x) for x in output]
|
273 |
+
|
274 |
+
def _tokenize_chinese_chars(self, text):
|
275 |
+
"""Adds whitespace around any CJK character."""
|
276 |
+
output = []
|
277 |
+
for char in text:
|
278 |
+
cp = ord(char)
|
279 |
+
if self._is_chinese_char(cp):
|
280 |
+
output.append(' ')
|
281 |
+
output.append(char)
|
282 |
+
output.append(' ')
|
283 |
+
else:
|
284 |
+
output.append(char)
|
285 |
+
return ''.join(output)
|
286 |
+
|
287 |
+
def _is_chinese_char(self, cp):
|
288 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
289 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
290 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
291 |
+
#
|
292 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
293 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
294 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
295 |
+
# space-separated words, so they are not treated specially and handled
|
296 |
+
# like the all of the other languages.
|
297 |
+
if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF)
|
298 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
299 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
300 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
301 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
302 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
303 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F)):
|
304 |
+
return True
|
305 |
+
|
306 |
+
return False
|
307 |
+
|
308 |
+
def _clean_text(self, text):
|
309 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
310 |
+
output = []
|
311 |
+
for char in text:
|
312 |
+
cp = ord(char)
|
313 |
+
if cp == 0 or cp == 0xfffd or _is_control(char):
|
314 |
+
continue
|
315 |
+
if _is_whitespace(char):
|
316 |
+
output.append(' ')
|
317 |
+
else:
|
318 |
+
output.append(char)
|
319 |
+
return ''.join(output)
|
320 |
+
|
321 |
+
|
322 |
+
class WordpieceTokenizer(object):
|
323 |
+
"""Runs WordPiece tokenziation."""
|
324 |
+
|
325 |
+
def __init__(self, vocab, unk_token='[UNK]', max_input_chars_per_word=200):
|
326 |
+
self.vocab = vocab
|
327 |
+
self.unk_token = unk_token
|
328 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
329 |
+
|
330 |
+
def tokenize(self, text):
|
331 |
+
"""Tokenizes a piece of text into its word pieces.
|
332 |
+
|
333 |
+
This uses a greedy longest-match-first algorithm to perform tokenization
|
334 |
+
using the given vocabulary.
|
335 |
+
|
336 |
+
For example:
|
337 |
+
input = "unaffable"
|
338 |
+
output = ["un", "##aff", "##able"]
|
339 |
+
|
340 |
+
Args:
|
341 |
+
text: A single token or whitespace separated tokens. This should have
|
342 |
+
already been passed through `BasicTokenizer.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
A list of wordpiece tokens.
|
346 |
+
"""
|
347 |
+
|
348 |
+
text = convert_to_unicode(text)
|
349 |
+
|
350 |
+
output_tokens = []
|
351 |
+
for token in whitespace_tokenize(text):
|
352 |
+
chars = list(token)
|
353 |
+
if len(chars) > self.max_input_chars_per_word:
|
354 |
+
output_tokens.append(self.unk_token)
|
355 |
+
continue
|
356 |
+
|
357 |
+
is_bad = False
|
358 |
+
start = 0
|
359 |
+
sub_tokens = []
|
360 |
+
while start < len(chars):
|
361 |
+
end = len(chars)
|
362 |
+
cur_substr = None
|
363 |
+
while start < end:
|
364 |
+
substr = ''.join(chars[start:end])
|
365 |
+
if start > 0:
|
366 |
+
substr = '##' + substr
|
367 |
+
if substr in self.vocab:
|
368 |
+
cur_substr = substr
|
369 |
+
break
|
370 |
+
end -= 1
|
371 |
+
if cur_substr is None:
|
372 |
+
is_bad = True
|
373 |
+
break
|
374 |
+
sub_tokens.append(cur_substr)
|
375 |
+
start = end
|
376 |
+
|
377 |
+
if is_bad:
|
378 |
+
output_tokens.append(self.unk_token)
|
379 |
+
else:
|
380 |
+
output_tokens.extend(sub_tokens)
|
381 |
+
return output_tokens
|
382 |
+
|
383 |
+
|
384 |
+
def _is_whitespace(char):
|
385 |
+
"""Checks whether `chars` is a whitespace character."""
|
386 |
+
# \t, \n, and \r are technically contorl characters but we treat them
|
387 |
+
# as whitespace since they are generally considered as such.
|
388 |
+
if char == ' ' or char == '\t' or char == '\n' or char == '\r':
|
389 |
+
return True
|
390 |
+
cat = unicodedata.category(char)
|
391 |
+
if cat == 'Zs':
|
392 |
+
return True
|
393 |
+
return False
|
394 |
+
|
395 |
+
|
396 |
+
def _is_control(char):
|
397 |
+
"""Checks whether `chars` is a control character."""
|
398 |
+
# These are technically control characters but we count them as whitespace
|
399 |
+
# characters.
|
400 |
+
if char == '\t' or char == '\n' or char == '\r':
|
401 |
+
return False
|
402 |
+
cat = unicodedata.category(char)
|
403 |
+
if cat in ('Cc', 'Cf'):
|
404 |
+
return True
|
405 |
+
return False
|
406 |
+
|
407 |
+
|
408 |
+
def _is_punctuation(char):
|
409 |
+
"""Checks whether `chars` is a punctuation character."""
|
410 |
+
cp = ord(char)
|
411 |
+
# We treat all non-letter/number ASCII as punctuation.
|
412 |
+
# Characters such as "^", "$", and "`" are not in the Unicode
|
413 |
+
# Punctuation class but we treat them as punctuation anyways, for
|
414 |
+
# consistency.
|
415 |
+
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64)
|
416 |
+
or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
417 |
+
return True
|
418 |
+
cat = unicodedata.category(char)
|
419 |
+
if cat.startswith('P'):
|
420 |
+
return True
|
421 |
+
return False
|
cldm/cldm.py
ADDED
@@ -0,0 +1,617 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import einops
|
2 |
+
import torch
|
3 |
+
import torch as th
|
4 |
+
import torch.nn as nn
|
5 |
+
import copy
|
6 |
+
from easydict import EasyDict as edict
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import (
|
9 |
+
conv_nd,
|
10 |
+
linear,
|
11 |
+
zero_module,
|
12 |
+
timestep_embedding,
|
13 |
+
)
|
14 |
+
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
from torchvision.utils import make_grid
|
17 |
+
from ldm.modules.attention import SpatialTransformer
|
18 |
+
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
19 |
+
from ldm.models.diffusion.ddpm import LatentDiffusion
|
20 |
+
from ldm.util import log_txt_as_img, exists, instantiate_from_config
|
21 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
22 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
23 |
+
from .recognizer import TextRecognizer, create_predictor
|
24 |
+
|
25 |
+
|
26 |
+
def count_parameters(model):
|
27 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
28 |
+
|
29 |
+
|
30 |
+
class ControlledUnetModel(UNetModel):
|
31 |
+
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
32 |
+
hs = []
|
33 |
+
with torch.no_grad():
|
34 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
35 |
+
emb = self.time_embed(t_emb)
|
36 |
+
h = x.type(self.dtype)
|
37 |
+
for module in self.input_blocks:
|
38 |
+
h = module(h, emb, context)
|
39 |
+
hs.append(h)
|
40 |
+
h = self.middle_block(h, emb, context)
|
41 |
+
|
42 |
+
if control is not None:
|
43 |
+
h += control.pop()
|
44 |
+
|
45 |
+
for i, module in enumerate(self.output_blocks):
|
46 |
+
if only_mid_control or control is None:
|
47 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
48 |
+
else:
|
49 |
+
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
|
50 |
+
h = module(h, emb, context)
|
51 |
+
|
52 |
+
h = h.type(x.dtype)
|
53 |
+
return self.out(h)
|
54 |
+
|
55 |
+
|
56 |
+
class ControlNet(nn.Module):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
image_size,
|
60 |
+
in_channels,
|
61 |
+
model_channels,
|
62 |
+
glyph_channels,
|
63 |
+
position_channels,
|
64 |
+
num_res_blocks,
|
65 |
+
attention_resolutions,
|
66 |
+
dropout=0,
|
67 |
+
channel_mult=(1, 2, 4, 8),
|
68 |
+
conv_resample=True,
|
69 |
+
dims=2,
|
70 |
+
use_checkpoint=False,
|
71 |
+
use_fp16=False,
|
72 |
+
num_heads=-1,
|
73 |
+
num_head_channels=-1,
|
74 |
+
num_heads_upsample=-1,
|
75 |
+
use_scale_shift_norm=False,
|
76 |
+
resblock_updown=False,
|
77 |
+
use_new_attention_order=False,
|
78 |
+
use_spatial_transformer=False, # custom transformer support
|
79 |
+
transformer_depth=1, # custom transformer support
|
80 |
+
context_dim=None, # custom transformer support
|
81 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
82 |
+
legacy=True,
|
83 |
+
disable_self_attentions=None,
|
84 |
+
num_attention_blocks=None,
|
85 |
+
disable_middle_self_attn=False,
|
86 |
+
use_linear_in_transformer=False,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
if use_spatial_transformer:
|
90 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
91 |
+
|
92 |
+
if context_dim is not None:
|
93 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
94 |
+
from omegaconf.listconfig import ListConfig
|
95 |
+
if type(context_dim) == ListConfig:
|
96 |
+
context_dim = list(context_dim)
|
97 |
+
|
98 |
+
if num_heads_upsample == -1:
|
99 |
+
num_heads_upsample = num_heads
|
100 |
+
|
101 |
+
if num_heads == -1:
|
102 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
103 |
+
|
104 |
+
if num_head_channels == -1:
|
105 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
106 |
+
self.dims = dims
|
107 |
+
self.image_size = image_size
|
108 |
+
self.in_channels = in_channels
|
109 |
+
self.model_channels = model_channels
|
110 |
+
if isinstance(num_res_blocks, int):
|
111 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
112 |
+
else:
|
113 |
+
if len(num_res_blocks) != len(channel_mult):
|
114 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
115 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
116 |
+
self.num_res_blocks = num_res_blocks
|
117 |
+
if disable_self_attentions is not None:
|
118 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
119 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
120 |
+
if num_attention_blocks is not None:
|
121 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
122 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
123 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
124 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
125 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
126 |
+
f"attention will still not be set.")
|
127 |
+
|
128 |
+
self.attention_resolutions = attention_resolutions
|
129 |
+
self.dropout = dropout
|
130 |
+
self.channel_mult = channel_mult
|
131 |
+
self.conv_resample = conv_resample
|
132 |
+
self.use_checkpoint = use_checkpoint
|
133 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
134 |
+
self.num_heads = num_heads
|
135 |
+
self.num_head_channels = num_head_channels
|
136 |
+
self.num_heads_upsample = num_heads_upsample
|
137 |
+
self.predict_codebook_ids = n_embed is not None
|
138 |
+
|
139 |
+
time_embed_dim = model_channels * 4
|
140 |
+
self.time_embed = nn.Sequential(
|
141 |
+
linear(model_channels, time_embed_dim),
|
142 |
+
nn.SiLU(),
|
143 |
+
linear(time_embed_dim, time_embed_dim),
|
144 |
+
)
|
145 |
+
|
146 |
+
self.input_blocks = nn.ModuleList(
|
147 |
+
[
|
148 |
+
TimestepEmbedSequential(
|
149 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
150 |
+
)
|
151 |
+
]
|
152 |
+
)
|
153 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
154 |
+
|
155 |
+
self.glyph_block = TimestepEmbedSequential(
|
156 |
+
conv_nd(dims, glyph_channels, 8, 3, padding=1),
|
157 |
+
nn.SiLU(),
|
158 |
+
conv_nd(dims, 8, 8, 3, padding=1),
|
159 |
+
nn.SiLU(),
|
160 |
+
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
|
161 |
+
nn.SiLU(),
|
162 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
163 |
+
nn.SiLU(),
|
164 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
165 |
+
nn.SiLU(),
|
166 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
167 |
+
nn.SiLU(),
|
168 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
169 |
+
nn.SiLU(),
|
170 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
171 |
+
nn.SiLU(),
|
172 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
173 |
+
nn.SiLU(),
|
174 |
+
)
|
175 |
+
|
176 |
+
self.position_block = TimestepEmbedSequential(
|
177 |
+
conv_nd(dims, position_channels, 8, 3, padding=1),
|
178 |
+
nn.SiLU(),
|
179 |
+
conv_nd(dims, 8, 8, 3, padding=1),
|
180 |
+
nn.SiLU(),
|
181 |
+
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
|
182 |
+
nn.SiLU(),
|
183 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
184 |
+
nn.SiLU(),
|
185 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
186 |
+
nn.SiLU(),
|
187 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
188 |
+
nn.SiLU(),
|
189 |
+
conv_nd(dims, 32, 64, 3, padding=1, stride=2),
|
190 |
+
nn.SiLU(),
|
191 |
+
)
|
192 |
+
|
193 |
+
self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1))
|
194 |
+
|
195 |
+
self._feature_size = model_channels
|
196 |
+
input_block_chans = [model_channels]
|
197 |
+
ch = model_channels
|
198 |
+
ds = 1
|
199 |
+
for level, mult in enumerate(channel_mult):
|
200 |
+
for nr in range(self.num_res_blocks[level]):
|
201 |
+
layers = [
|
202 |
+
ResBlock(
|
203 |
+
ch,
|
204 |
+
time_embed_dim,
|
205 |
+
dropout,
|
206 |
+
out_channels=mult * model_channels,
|
207 |
+
dims=dims,
|
208 |
+
use_checkpoint=use_checkpoint,
|
209 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
210 |
+
)
|
211 |
+
]
|
212 |
+
ch = mult * model_channels
|
213 |
+
if ds in attention_resolutions:
|
214 |
+
if num_head_channels == -1:
|
215 |
+
dim_head = ch // num_heads
|
216 |
+
else:
|
217 |
+
num_heads = ch // num_head_channels
|
218 |
+
dim_head = num_head_channels
|
219 |
+
if legacy:
|
220 |
+
# num_heads = 1
|
221 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
222 |
+
if exists(disable_self_attentions):
|
223 |
+
disabled_sa = disable_self_attentions[level]
|
224 |
+
else:
|
225 |
+
disabled_sa = False
|
226 |
+
|
227 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
228 |
+
layers.append(
|
229 |
+
AttentionBlock(
|
230 |
+
ch,
|
231 |
+
use_checkpoint=use_checkpoint,
|
232 |
+
num_heads=num_heads,
|
233 |
+
num_head_channels=dim_head,
|
234 |
+
use_new_attention_order=use_new_attention_order,
|
235 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
236 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
237 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
238 |
+
use_checkpoint=use_checkpoint
|
239 |
+
)
|
240 |
+
)
|
241 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
242 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
243 |
+
self._feature_size += ch
|
244 |
+
input_block_chans.append(ch)
|
245 |
+
if level != len(channel_mult) - 1:
|
246 |
+
out_ch = ch
|
247 |
+
self.input_blocks.append(
|
248 |
+
TimestepEmbedSequential(
|
249 |
+
ResBlock(
|
250 |
+
ch,
|
251 |
+
time_embed_dim,
|
252 |
+
dropout,
|
253 |
+
out_channels=out_ch,
|
254 |
+
dims=dims,
|
255 |
+
use_checkpoint=use_checkpoint,
|
256 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
257 |
+
down=True,
|
258 |
+
)
|
259 |
+
if resblock_updown
|
260 |
+
else Downsample(
|
261 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
262 |
+
)
|
263 |
+
)
|
264 |
+
)
|
265 |
+
ch = out_ch
|
266 |
+
input_block_chans.append(ch)
|
267 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
268 |
+
ds *= 2
|
269 |
+
self._feature_size += ch
|
270 |
+
|
271 |
+
if num_head_channels == -1:
|
272 |
+
dim_head = ch // num_heads
|
273 |
+
else:
|
274 |
+
num_heads = ch // num_head_channels
|
275 |
+
dim_head = num_head_channels
|
276 |
+
if legacy:
|
277 |
+
# num_heads = 1
|
278 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
279 |
+
self.middle_block = TimestepEmbedSequential(
|
280 |
+
ResBlock(
|
281 |
+
ch,
|
282 |
+
time_embed_dim,
|
283 |
+
dropout,
|
284 |
+
dims=dims,
|
285 |
+
use_checkpoint=use_checkpoint,
|
286 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
287 |
+
),
|
288 |
+
AttentionBlock(
|
289 |
+
ch,
|
290 |
+
use_checkpoint=use_checkpoint,
|
291 |
+
num_heads=num_heads,
|
292 |
+
num_head_channels=dim_head,
|
293 |
+
use_new_attention_order=use_new_attention_order,
|
294 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
295 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
296 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
297 |
+
use_checkpoint=use_checkpoint
|
298 |
+
),
|
299 |
+
ResBlock(
|
300 |
+
ch,
|
301 |
+
time_embed_dim,
|
302 |
+
dropout,
|
303 |
+
dims=dims,
|
304 |
+
use_checkpoint=use_checkpoint,
|
305 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
306 |
+
),
|
307 |
+
)
|
308 |
+
self.middle_block_out = self.make_zero_conv(ch)
|
309 |
+
self._feature_size += ch
|
310 |
+
|
311 |
+
def make_zero_conv(self, channels):
|
312 |
+
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
313 |
+
|
314 |
+
def forward(self, x, hint, text_info, timesteps, context, **kwargs):
|
315 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
316 |
+
emb = self.time_embed(t_emb)
|
317 |
+
|
318 |
+
# guided_hint from text_info
|
319 |
+
B, C, H, W = x.shape
|
320 |
+
glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True)
|
321 |
+
positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True)
|
322 |
+
enc_glyph = self.glyph_block(glyphs, emb, context)
|
323 |
+
enc_pos = self.position_block(positions, emb, context)
|
324 |
+
guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1))
|
325 |
+
|
326 |
+
outs = []
|
327 |
+
|
328 |
+
h = x.type(self.dtype)
|
329 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
330 |
+
if guided_hint is not None:
|
331 |
+
h = module(h, emb, context)
|
332 |
+
h += guided_hint
|
333 |
+
guided_hint = None
|
334 |
+
else:
|
335 |
+
h = module(h, emb, context)
|
336 |
+
outs.append(zero_conv(h, emb, context))
|
337 |
+
|
338 |
+
h = self.middle_block(h, emb, context)
|
339 |
+
outs.append(self.middle_block_out(h, emb, context))
|
340 |
+
|
341 |
+
return outs
|
342 |
+
|
343 |
+
|
344 |
+
class ControlLDM(LatentDiffusion):
|
345 |
+
|
346 |
+
def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs):
|
347 |
+
super().__init__(*args, **kwargs)
|
348 |
+
self.control_model = instantiate_from_config(control_stage_config)
|
349 |
+
self.control_key = control_key
|
350 |
+
self.glyph_key = glyph_key
|
351 |
+
self.position_key = position_key
|
352 |
+
self.only_mid_control = only_mid_control
|
353 |
+
self.control_scales = [1.0] * 13
|
354 |
+
self.loss_alpha = loss_alpha
|
355 |
+
self.loss_beta = loss_beta
|
356 |
+
self.with_step_weight = with_step_weight
|
357 |
+
self.use_vae_upsample = use_vae_upsample
|
358 |
+
self.latin_weight = latin_weight
|
359 |
+
if embedding_manager_config is not None and embedding_manager_config.params.valid:
|
360 |
+
self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model)
|
361 |
+
for param in self.embedding_manager.embedding_parameters():
|
362 |
+
param.requires_grad = True
|
363 |
+
else:
|
364 |
+
self.embedding_manager = None
|
365 |
+
if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager:
|
366 |
+
if embedding_manager_config.params.emb_type == 'ocr':
|
367 |
+
self.text_predictor = create_predictor().eval()
|
368 |
+
args = edict()
|
369 |
+
args.rec_image_shape = "3, 48, 320"
|
370 |
+
args.rec_batch_num = 6
|
371 |
+
args.rec_char_dict_path = './ocr_recog/ppocr_keys_v1.txt'
|
372 |
+
self.cn_recognizer = TextRecognizer(args, self.text_predictor)
|
373 |
+
for param in self.text_predictor.parameters():
|
374 |
+
param.requires_grad = False
|
375 |
+
if self.embedding_manager:
|
376 |
+
self.embedding_manager.recog = self.cn_recognizer
|
377 |
+
|
378 |
+
@torch.no_grad()
|
379 |
+
def get_input(self, batch, k, bs=None, *args, **kwargs):
|
380 |
+
if self.embedding_manager is None: # fill in full caption
|
381 |
+
self.fill_caption(batch)
|
382 |
+
x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs)
|
383 |
+
control = batch[self.control_key] # for log_images and loss_alpha, not real control
|
384 |
+
if bs is not None:
|
385 |
+
control = control[:bs]
|
386 |
+
control = control.to(self.device)
|
387 |
+
control = einops.rearrange(control, 'b h w c -> b c h w')
|
388 |
+
control = control.to(memory_format=torch.contiguous_format).float()
|
389 |
+
|
390 |
+
inv_mask = batch['inv_mask']
|
391 |
+
if bs is not None:
|
392 |
+
inv_mask = inv_mask[:bs]
|
393 |
+
inv_mask = inv_mask.to(self.device)
|
394 |
+
inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w')
|
395 |
+
inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float()
|
396 |
+
|
397 |
+
glyphs = batch[self.glyph_key]
|
398 |
+
gly_line = batch['gly_line']
|
399 |
+
positions = batch[self.position_key]
|
400 |
+
n_lines = batch['n_lines']
|
401 |
+
language = batch['language']
|
402 |
+
texts = batch['texts']
|
403 |
+
assert len(glyphs) == len(positions)
|
404 |
+
for i in range(len(glyphs)):
|
405 |
+
if bs is not None:
|
406 |
+
glyphs[i] = glyphs[i][:bs]
|
407 |
+
gly_line[i] = gly_line[i][:bs]
|
408 |
+
positions[i] = positions[i][:bs]
|
409 |
+
n_lines = n_lines[:bs]
|
410 |
+
glyphs[i] = glyphs[i].to(self.device)
|
411 |
+
gly_line[i] = gly_line[i].to(self.device)
|
412 |
+
positions[i] = positions[i].to(self.device)
|
413 |
+
glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w')
|
414 |
+
gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w')
|
415 |
+
positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w')
|
416 |
+
glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float()
|
417 |
+
gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float()
|
418 |
+
positions[i] = positions[i].to(memory_format=torch.contiguous_format).float()
|
419 |
+
info = {}
|
420 |
+
info['glyphs'] = glyphs
|
421 |
+
info['positions'] = positions
|
422 |
+
info['n_lines'] = n_lines
|
423 |
+
info['language'] = language
|
424 |
+
info['texts'] = texts
|
425 |
+
info['img'] = batch['img'] # nhwc, (-1,1)
|
426 |
+
info['masked_x'] = mx
|
427 |
+
info['gly_line'] = gly_line
|
428 |
+
info['inv_mask'] = inv_mask
|
429 |
+
return x, dict(c_crossattn=[c], c_concat=[control], text_info=info)
|
430 |
+
|
431 |
+
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
|
432 |
+
assert isinstance(cond, dict)
|
433 |
+
diffusion_model = self.model.diffusion_model
|
434 |
+
_cond = torch.cat(cond['c_crossattn'], 1)
|
435 |
+
_hint = torch.cat(cond['c_concat'], 1)
|
436 |
+
control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info'])
|
437 |
+
control = [c * scale for c, scale in zip(control, self.control_scales)]
|
438 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control)
|
439 |
+
|
440 |
+
return eps
|
441 |
+
|
442 |
+
def instantiate_embedding_manager(self, config, embedder):
|
443 |
+
model = instantiate_from_config(config, embedder=embedder)
|
444 |
+
return model
|
445 |
+
|
446 |
+
@torch.no_grad()
|
447 |
+
def get_unconditional_conditioning(self, N):
|
448 |
+
return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None))
|
449 |
+
|
450 |
+
def get_learned_conditioning(self, c):
|
451 |
+
if self.cond_stage_forward is None:
|
452 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
453 |
+
if self.embedding_manager is not None and c['text_info'] is not None:
|
454 |
+
self.embedding_manager.encode_text(c['text_info'])
|
455 |
+
if isinstance(c, dict):
|
456 |
+
cond_txt = c['c_crossattn'][0]
|
457 |
+
else:
|
458 |
+
cond_txt = c
|
459 |
+
if self.embedding_manager is not None:
|
460 |
+
cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager)
|
461 |
+
else:
|
462 |
+
cond_txt = self.cond_stage_model.encode(cond_txt)
|
463 |
+
if isinstance(c, dict):
|
464 |
+
c['c_crossattn'][0] = cond_txt
|
465 |
+
else:
|
466 |
+
c = cond_txt
|
467 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
468 |
+
c = c.mode()
|
469 |
+
else:
|
470 |
+
c = self.cond_stage_model(c)
|
471 |
+
else:
|
472 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
473 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
474 |
+
return c
|
475 |
+
|
476 |
+
def fill_caption(self, batch, place_holder='*'):
|
477 |
+
bs = len(batch['n_lines'])
|
478 |
+
cond_list = copy.deepcopy(batch[self.cond_stage_key])
|
479 |
+
for i in range(bs):
|
480 |
+
n_lines = batch['n_lines'][i]
|
481 |
+
if n_lines == 0:
|
482 |
+
continue
|
483 |
+
cur_cap = cond_list[i]
|
484 |
+
for j in range(n_lines):
|
485 |
+
r_txt = batch['texts'][j][i]
|
486 |
+
cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1)
|
487 |
+
cond_list[i] = cur_cap
|
488 |
+
batch[self.cond_stage_key] = cond_list
|
489 |
+
|
490 |
+
@torch.no_grad()
|
491 |
+
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
492 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
493 |
+
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
494 |
+
use_ema_scope=True,
|
495 |
+
**kwargs):
|
496 |
+
use_ddim = ddim_steps is not None
|
497 |
+
|
498 |
+
log = dict()
|
499 |
+
z, c = self.get_input(batch, self.first_stage_key, bs=N)
|
500 |
+
if self.cond_stage_trainable:
|
501 |
+
with torch.no_grad():
|
502 |
+
c = self.get_learned_conditioning(c)
|
503 |
+
c_crossattn = c["c_crossattn"][0][:N]
|
504 |
+
c_cat = c["c_concat"][0][:N]
|
505 |
+
text_info = c["text_info"]
|
506 |
+
text_info['glyphs'] = [i[:N] for i in text_info['glyphs']]
|
507 |
+
text_info['gly_line'] = [i[:N] for i in text_info['gly_line']]
|
508 |
+
text_info['positions'] = [i[:N] for i in text_info['positions']]
|
509 |
+
text_info['n_lines'] = text_info['n_lines'][:N]
|
510 |
+
text_info['masked_x'] = text_info['masked_x'][:N]
|
511 |
+
text_info['img'] = text_info['img'][:N]
|
512 |
+
|
513 |
+
N = min(z.shape[0], N)
|
514 |
+
n_row = min(z.shape[0], n_row)
|
515 |
+
log["reconstruction"] = self.decode_first_stage(z)
|
516 |
+
log["masked_image"] = self.decode_first_stage(text_info['masked_x'])
|
517 |
+
log["control"] = c_cat * 2.0 - 1.0
|
518 |
+
log["img"] = text_info['img'].permute(0, 3, 1, 2) # log source image if needed
|
519 |
+
# get glyph
|
520 |
+
glyph_bs = torch.stack(text_info['glyphs'])
|
521 |
+
glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0
|
522 |
+
log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,)
|
523 |
+
# fill caption
|
524 |
+
if not self.embedding_manager:
|
525 |
+
self.fill_caption(batch)
|
526 |
+
captions = batch[self.cond_stage_key]
|
527 |
+
log["conditioning"] = log_txt_as_img((512, 512), captions, size=16)
|
528 |
+
|
529 |
+
if plot_diffusion_rows:
|
530 |
+
# get diffusion row
|
531 |
+
diffusion_row = list()
|
532 |
+
z_start = z[:n_row]
|
533 |
+
for t in range(self.num_timesteps):
|
534 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
535 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
536 |
+
t = t.to(self.device).long()
|
537 |
+
noise = torch.randn_like(z_start)
|
538 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
539 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
540 |
+
|
541 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
542 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
543 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
544 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
545 |
+
log["diffusion_row"] = diffusion_grid
|
546 |
+
|
547 |
+
if sample:
|
548 |
+
# get denoise row
|
549 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info},
|
550 |
+
batch_size=N, ddim=use_ddim,
|
551 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
552 |
+
x_samples = self.decode_first_stage(samples)
|
553 |
+
log["samples"] = x_samples
|
554 |
+
if plot_denoise_rows:
|
555 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
556 |
+
log["denoise_row"] = denoise_grid
|
557 |
+
|
558 |
+
if unconditional_guidance_scale > 1.0:
|
559 |
+
uc_cross = self.get_unconditional_conditioning(N)
|
560 |
+
uc_cat = c_cat # torch.zeros_like(c_cat)
|
561 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info}
|
562 |
+
samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info},
|
563 |
+
batch_size=N, ddim=use_ddim,
|
564 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
565 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
566 |
+
unconditional_conditioning=uc_full,
|
567 |
+
)
|
568 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
569 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
570 |
+
pred_x0 = False # wether log pred_x0
|
571 |
+
if pred_x0:
|
572 |
+
for idx in range(len(tmps['pred_x0'])):
|
573 |
+
pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx])
|
574 |
+
log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0
|
575 |
+
|
576 |
+
return log
|
577 |
+
|
578 |
+
@torch.no_grad()
|
579 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
580 |
+
ddim_sampler = DDIMSampler(self)
|
581 |
+
b, c, h, w = cond["c_concat"][0].shape
|
582 |
+
shape = (self.channels, h // 8, w // 8)
|
583 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs)
|
584 |
+
return samples, intermediates
|
585 |
+
|
586 |
+
def configure_optimizers(self):
|
587 |
+
lr = self.learning_rate
|
588 |
+
params = list(self.control_model.parameters())
|
589 |
+
if self.embedding_manager:
|
590 |
+
params += list(self.embedding_manager.embedding_parameters())
|
591 |
+
if not self.sd_locked:
|
592 |
+
# params += list(self.model.diffusion_model.input_blocks.parameters())
|
593 |
+
# params += list(self.model.diffusion_model.middle_block.parameters())
|
594 |
+
params += list(self.model.diffusion_model.output_blocks.parameters())
|
595 |
+
params += list(self.model.diffusion_model.out.parameters())
|
596 |
+
if self.unlockKV:
|
597 |
+
nCount = 0
|
598 |
+
for name, param in self.model.diffusion_model.named_parameters():
|
599 |
+
if 'attn2.to_k' in name or 'attn2.to_v' in name:
|
600 |
+
params += [param]
|
601 |
+
nCount += 1
|
602 |
+
print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!')
|
603 |
+
|
604 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
605 |
+
return opt
|
606 |
+
|
607 |
+
def low_vram_shift(self, is_diffusing):
|
608 |
+
if is_diffusing:
|
609 |
+
self.model = self.model.cuda()
|
610 |
+
self.control_model = self.control_model.cuda()
|
611 |
+
self.first_stage_model = self.first_stage_model.cpu()
|
612 |
+
self.cond_stage_model = self.cond_stage_model.cpu()
|
613 |
+
else:
|
614 |
+
self.model = self.model.cpu()
|
615 |
+
self.control_model = self.control_model.cpu()
|
616 |
+
self.first_stage_model = self.first_stage_model.cuda()
|
617 |
+
self.cond_stage_model = self.cond_stage_model.cuda()
|
cldm/ddim_hacked.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
+
|
9 |
+
|
10 |
+
class DDIMSampler(object):
|
11 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
self.model = model
|
14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
15 |
+
self.schedule = schedule
|
16 |
+
|
17 |
+
def register_buffer(self, name, attr):
|
18 |
+
if type(attr) == torch.Tensor:
|
19 |
+
if attr.device != torch.device("cuda"):
|
20 |
+
attr = attr.to(torch.device("cuda"))
|
21 |
+
setattr(self, name, attr)
|
22 |
+
|
23 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
24 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
25 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
26 |
+
alphas_cumprod = self.model.alphas_cumprod
|
27 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
28 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
29 |
+
|
30 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
31 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
32 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
33 |
+
|
34 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
35 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
36 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
37 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
38 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
40 |
+
|
41 |
+
# ddim sampling parameters
|
42 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
43 |
+
ddim_timesteps=self.ddim_timesteps,
|
44 |
+
eta=ddim_eta,verbose=verbose)
|
45 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
46 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
47 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
48 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
49 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
50 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
51 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
52 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def sample(self,
|
56 |
+
S,
|
57 |
+
batch_size,
|
58 |
+
shape,
|
59 |
+
conditioning=None,
|
60 |
+
callback=None,
|
61 |
+
normals_sequence=None,
|
62 |
+
img_callback=None,
|
63 |
+
quantize_x0=False,
|
64 |
+
eta=0.,
|
65 |
+
mask=None,
|
66 |
+
x0=None,
|
67 |
+
temperature=1.,
|
68 |
+
noise_dropout=0.,
|
69 |
+
score_corrector=None,
|
70 |
+
corrector_kwargs=None,
|
71 |
+
verbose=True,
|
72 |
+
x_T=None,
|
73 |
+
log_every_t=100,
|
74 |
+
unconditional_guidance_scale=1.,
|
75 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
76 |
+
dynamic_threshold=None,
|
77 |
+
ucg_schedule=None,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
if conditioning is not None:
|
81 |
+
if isinstance(conditioning, dict):
|
82 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
83 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
84 |
+
cbs = ctmp.shape[0]
|
85 |
+
if cbs != batch_size:
|
86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
87 |
+
|
88 |
+
elif isinstance(conditioning, list):
|
89 |
+
for ctmp in conditioning:
|
90 |
+
if ctmp.shape[0] != batch_size:
|
91 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
92 |
+
|
93 |
+
else:
|
94 |
+
if conditioning.shape[0] != batch_size:
|
95 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
96 |
+
|
97 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
98 |
+
# sampling
|
99 |
+
C, H, W = shape
|
100 |
+
size = (batch_size, C, H, W)
|
101 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
102 |
+
|
103 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
104 |
+
callback=callback,
|
105 |
+
img_callback=img_callback,
|
106 |
+
quantize_denoised=quantize_x0,
|
107 |
+
mask=mask, x0=x0,
|
108 |
+
ddim_use_original_steps=False,
|
109 |
+
noise_dropout=noise_dropout,
|
110 |
+
temperature=temperature,
|
111 |
+
score_corrector=score_corrector,
|
112 |
+
corrector_kwargs=corrector_kwargs,
|
113 |
+
x_T=x_T,
|
114 |
+
log_every_t=log_every_t,
|
115 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
116 |
+
unconditional_conditioning=unconditional_conditioning,
|
117 |
+
dynamic_threshold=dynamic_threshold,
|
118 |
+
ucg_schedule=ucg_schedule
|
119 |
+
)
|
120 |
+
return samples, intermediates
|
121 |
+
|
122 |
+
@torch.no_grad()
|
123 |
+
def ddim_sampling(self, cond, shape,
|
124 |
+
x_T=None, ddim_use_original_steps=False,
|
125 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
126 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
127 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
128 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
129 |
+
ucg_schedule=None):
|
130 |
+
device = self.model.betas.device
|
131 |
+
b = shape[0]
|
132 |
+
if x_T is None:
|
133 |
+
img = torch.randn(shape, device=device)
|
134 |
+
else:
|
135 |
+
img = x_T
|
136 |
+
|
137 |
+
if timesteps is None:
|
138 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
139 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
140 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
141 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
142 |
+
|
143 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
144 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
145 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
146 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
147 |
+
|
148 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
149 |
+
|
150 |
+
for i, step in enumerate(iterator):
|
151 |
+
index = total_steps - i - 1
|
152 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
153 |
+
|
154 |
+
if mask is not None:
|
155 |
+
assert x0 is not None
|
156 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
157 |
+
img = img_orig * mask + (1. - mask) * img
|
158 |
+
|
159 |
+
if ucg_schedule is not None:
|
160 |
+
assert len(ucg_schedule) == len(time_range)
|
161 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
162 |
+
|
163 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
164 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
165 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
166 |
+
corrector_kwargs=corrector_kwargs,
|
167 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
168 |
+
unconditional_conditioning=unconditional_conditioning,
|
169 |
+
dynamic_threshold=dynamic_threshold)
|
170 |
+
img, pred_x0 = outs
|
171 |
+
if callback: callback(i)
|
172 |
+
if img_callback: img_callback(pred_x0, i)
|
173 |
+
|
174 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
175 |
+
intermediates['x_inter'].append(img)
|
176 |
+
intermediates['pred_x0'].append(pred_x0)
|
177 |
+
|
178 |
+
return img, intermediates
|
179 |
+
|
180 |
+
@torch.no_grad()
|
181 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
182 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
183 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
184 |
+
dynamic_threshold=None):
|
185 |
+
b, *_, device = *x.shape, x.device
|
186 |
+
|
187 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
188 |
+
model_output = self.model.apply_model(x, t, c)
|
189 |
+
else:
|
190 |
+
model_t = self.model.apply_model(x, t, c)
|
191 |
+
model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
|
192 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
193 |
+
|
194 |
+
if self.model.parameterization == "v":
|
195 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
196 |
+
else:
|
197 |
+
e_t = model_output
|
198 |
+
|
199 |
+
if score_corrector is not None:
|
200 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
201 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
202 |
+
|
203 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
204 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
205 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
206 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
207 |
+
# select parameters corresponding to the currently considered timestep
|
208 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
209 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
210 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
211 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
212 |
+
|
213 |
+
# current prediction for x_0
|
214 |
+
if self.model.parameterization != "v":
|
215 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
216 |
+
else:
|
217 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
218 |
+
|
219 |
+
if quantize_denoised:
|
220 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
221 |
+
|
222 |
+
if dynamic_threshold is not None:
|
223 |
+
raise NotImplementedError()
|
224 |
+
|
225 |
+
# direction pointing to x_t
|
226 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
227 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
228 |
+
if noise_dropout > 0.:
|
229 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
230 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
231 |
+
return x_prev, pred_x0
|
232 |
+
|
233 |
+
@torch.no_grad()
|
234 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
235 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
236 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
237 |
+
num_reference_steps = timesteps.shape[0]
|
238 |
+
|
239 |
+
assert t_enc <= num_reference_steps
|
240 |
+
num_steps = t_enc
|
241 |
+
|
242 |
+
if use_original_steps:
|
243 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
244 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
245 |
+
else:
|
246 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
247 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
248 |
+
|
249 |
+
x_next = x0
|
250 |
+
intermediates = []
|
251 |
+
inter_steps = []
|
252 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
253 |
+
t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
|
254 |
+
if unconditional_guidance_scale == 1.:
|
255 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
256 |
+
else:
|
257 |
+
assert unconditional_conditioning is not None
|
258 |
+
e_t_uncond, noise_pred = torch.chunk(
|
259 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
260 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
261 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
262 |
+
|
263 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
264 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
265 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
266 |
+
x_next = xt_weighted + weighted_noise_pred
|
267 |
+
if return_intermediates and i % (
|
268 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
269 |
+
intermediates.append(x_next)
|
270 |
+
inter_steps.append(i)
|
271 |
+
elif return_intermediates and i >= num_steps - 2:
|
272 |
+
intermediates.append(x_next)
|
273 |
+
inter_steps.append(i)
|
274 |
+
if callback: callback(i)
|
275 |
+
|
276 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
277 |
+
if return_intermediates:
|
278 |
+
out.update({'intermediates': intermediates})
|
279 |
+
return x_next, out
|
280 |
+
|
281 |
+
@torch.no_grad()
|
282 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
283 |
+
# fast, but does not allow for exact reconstruction
|
284 |
+
# t serves as an index to gather the correct alphas
|
285 |
+
if use_original_steps:
|
286 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
287 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
288 |
+
else:
|
289 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
290 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
291 |
+
|
292 |
+
if noise is None:
|
293 |
+
noise = torch.randn_like(x0)
|
294 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
295 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
296 |
+
|
297 |
+
@torch.no_grad()
|
298 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
299 |
+
use_original_steps=False, callback=None):
|
300 |
+
|
301 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
302 |
+
timesteps = timesteps[:t_start]
|
303 |
+
|
304 |
+
time_range = np.flip(timesteps)
|
305 |
+
total_steps = timesteps.shape[0]
|
306 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
307 |
+
|
308 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
309 |
+
x_dec = x_latent
|
310 |
+
for i, step in enumerate(iterator):
|
311 |
+
index = total_steps - i - 1
|
312 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
313 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
314 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
315 |
+
unconditional_conditioning=unconditional_conditioning)
|
316 |
+
if callback: callback(i)
|
317 |
+
return x_dec
|
cldm/embedding_manager.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
'''
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from functools import partial
|
8 |
+
from ldm.modules.diffusionmodules.util import conv_nd, linear
|
9 |
+
|
10 |
+
|
11 |
+
def get_clip_token_for_string(tokenizer, string):
|
12 |
+
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
|
13 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
14 |
+
tokens = batch_encoding["input_ids"]
|
15 |
+
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
|
16 |
+
return tokens[0, 1]
|
17 |
+
|
18 |
+
|
19 |
+
def get_bert_token_for_string(tokenizer, string):
|
20 |
+
token = tokenizer(string)
|
21 |
+
assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
22 |
+
token = token[0, 1]
|
23 |
+
return token
|
24 |
+
|
25 |
+
|
26 |
+
def get_clip_vision_emb(encoder, processor, img):
|
27 |
+
_img = img.repeat(1, 3, 1, 1)*255
|
28 |
+
inputs = processor(images=_img, return_tensors="pt")
|
29 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(img.device)
|
30 |
+
outputs = encoder(**inputs)
|
31 |
+
emb = outputs.image_embeds
|
32 |
+
return emb
|
33 |
+
|
34 |
+
|
35 |
+
def get_recog_emb(encoder, img_list):
|
36 |
+
_img_list = [(img.repeat(1, 3, 1, 1)*255)[0] for img in img_list]
|
37 |
+
encoder.predictor.eval()
|
38 |
+
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
|
39 |
+
return preds_neck
|
40 |
+
|
41 |
+
|
42 |
+
def pad_H(x):
|
43 |
+
_, _, H, W = x.shape
|
44 |
+
p_top = (W - H) // 2
|
45 |
+
p_bot = W - H - p_top
|
46 |
+
return F.pad(x, (0, 0, p_top, p_bot))
|
47 |
+
|
48 |
+
|
49 |
+
class EncodeNet(nn.Module):
|
50 |
+
def __init__(self, in_channels, out_channels):
|
51 |
+
super(EncodeNet, self).__init__()
|
52 |
+
chan = 16
|
53 |
+
n_layer = 4 # downsample
|
54 |
+
|
55 |
+
self.conv1 = conv_nd(2, in_channels, chan, 3, padding=1)
|
56 |
+
self.conv_list = nn.ModuleList([])
|
57 |
+
_c = chan
|
58 |
+
for i in range(n_layer):
|
59 |
+
self.conv_list.append(conv_nd(2, _c, _c*2, 3, padding=1, stride=2))
|
60 |
+
_c *= 2
|
61 |
+
self.conv2 = conv_nd(2, _c, out_channels, 3, padding=1)
|
62 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
63 |
+
self.act = nn.SiLU()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.act(self.conv1(x))
|
67 |
+
for layer in self.conv_list:
|
68 |
+
x = self.act(layer(x))
|
69 |
+
x = self.act(self.conv2(x))
|
70 |
+
x = self.avgpool(x)
|
71 |
+
x = x.view(x.size(0), -1)
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class EmbeddingManager(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
embedder,
|
79 |
+
valid=True,
|
80 |
+
glyph_channels=20,
|
81 |
+
position_channels=1,
|
82 |
+
placeholder_string='*',
|
83 |
+
add_pos=False,
|
84 |
+
emb_type='ocr',
|
85 |
+
**kwargs
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
|
89 |
+
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
|
90 |
+
token_dim = 768
|
91 |
+
if hasattr(embedder, 'vit'):
|
92 |
+
assert emb_type == 'vit'
|
93 |
+
self.get_vision_emb = partial(get_clip_vision_emb, embedder.vit, embedder.processor)
|
94 |
+
self.get_recog_emb = None
|
95 |
+
else: # using LDM's BERT encoder
|
96 |
+
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
|
97 |
+
token_dim = 1280
|
98 |
+
self.token_dim = token_dim
|
99 |
+
self.emb_type = emb_type
|
100 |
+
|
101 |
+
self.add_pos = add_pos
|
102 |
+
if add_pos:
|
103 |
+
self.position_encoder = EncodeNet(position_channels, token_dim)
|
104 |
+
if emb_type == 'ocr':
|
105 |
+
self.proj = linear(40*64, token_dim)
|
106 |
+
if emb_type == 'conv':
|
107 |
+
self.glyph_encoder = EncodeNet(glyph_channels, token_dim)
|
108 |
+
|
109 |
+
self.placeholder_token = get_token_for_string(placeholder_string)
|
110 |
+
|
111 |
+
def encode_text(self, text_info):
|
112 |
+
if self.get_recog_emb is None and self.emb_type == 'ocr':
|
113 |
+
self.get_recog_emb = partial(get_recog_emb, self.recog)
|
114 |
+
|
115 |
+
gline_list = []
|
116 |
+
pos_list = []
|
117 |
+
for i in range(len(text_info['n_lines'])): # sample index in a batch
|
118 |
+
n_lines = text_info['n_lines'][i]
|
119 |
+
for j in range(n_lines): # line
|
120 |
+
gline_list += [text_info['gly_line'][j][i:i+1]]
|
121 |
+
if self.add_pos:
|
122 |
+
pos_list += [text_info['positions'][j][i:i+1]]
|
123 |
+
|
124 |
+
if len(gline_list) > 0:
|
125 |
+
if self.emb_type == 'ocr':
|
126 |
+
recog_emb = self.get_recog_emb(gline_list)
|
127 |
+
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1))
|
128 |
+
elif self.emb_type == 'vit':
|
129 |
+
enc_glyph = self.get_vision_emb(pad_H(torch.cat(gline_list, dim=0)))
|
130 |
+
elif self.emb_type == 'conv':
|
131 |
+
enc_glyph = self.glyph_encoder(pad_H(torch.cat(gline_list, dim=0)))
|
132 |
+
if self.add_pos:
|
133 |
+
enc_pos = self.position_encoder(torch.cat(gline_list, dim=0))
|
134 |
+
enc_glyph = enc_glyph+enc_pos
|
135 |
+
|
136 |
+
self.text_embs_all = []
|
137 |
+
n_idx = 0
|
138 |
+
for i in range(len(text_info['n_lines'])): # sample index in a batch
|
139 |
+
n_lines = text_info['n_lines'][i]
|
140 |
+
text_embs = []
|
141 |
+
for j in range(n_lines): # line
|
142 |
+
text_embs += [enc_glyph[n_idx:n_idx+1]]
|
143 |
+
n_idx += 1
|
144 |
+
self.text_embs_all += [text_embs]
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
tokenized_text,
|
149 |
+
embedded_text,
|
150 |
+
):
|
151 |
+
b, device = tokenized_text.shape[0], tokenized_text.device
|
152 |
+
for i in range(b):
|
153 |
+
idx = tokenized_text[i] == self.placeholder_token.to(device)
|
154 |
+
if sum(idx) > 0:
|
155 |
+
if i >= len(self.text_embs_all):
|
156 |
+
print('truncation for log images...')
|
157 |
+
break
|
158 |
+
text_emb = torch.cat(self.text_embs_all[i], dim=0)
|
159 |
+
if sum(idx) != len(text_emb):
|
160 |
+
print('truncation for long caption...')
|
161 |
+
embedded_text[i][idx] = text_emb[:sum(idx)]
|
162 |
+
return embedded_text
|
163 |
+
|
164 |
+
def embedding_parameters(self):
|
165 |
+
return self.parameters()
|
cldm/hack.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import einops
|
3 |
+
|
4 |
+
import ldm.modules.encoders.modules
|
5 |
+
import ldm.modules.attention
|
6 |
+
|
7 |
+
from transformers import logging
|
8 |
+
from ldm.modules.attention import default
|
9 |
+
|
10 |
+
|
11 |
+
def disable_verbosity():
|
12 |
+
logging.set_verbosity_error()
|
13 |
+
print('logging improved.')
|
14 |
+
return
|
15 |
+
|
16 |
+
|
17 |
+
def enable_sliced_attention():
|
18 |
+
ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
|
19 |
+
print('Enabled sliced_attention.')
|
20 |
+
return
|
21 |
+
|
22 |
+
|
23 |
+
def hack_everything(clip_skip=0):
|
24 |
+
disable_verbosity()
|
25 |
+
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
|
26 |
+
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
|
27 |
+
print('Enabled clip hacks.')
|
28 |
+
return
|
29 |
+
|
30 |
+
|
31 |
+
# Written by Lvmin
|
32 |
+
def _hacked_clip_forward(self, text):
|
33 |
+
PAD = self.tokenizer.pad_token_id
|
34 |
+
EOS = self.tokenizer.eos_token_id
|
35 |
+
BOS = self.tokenizer.bos_token_id
|
36 |
+
|
37 |
+
def tokenize(t):
|
38 |
+
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
|
39 |
+
|
40 |
+
def transformer_encode(t):
|
41 |
+
if self.clip_skip > 1:
|
42 |
+
rt = self.transformer(input_ids=t, output_hidden_states=True)
|
43 |
+
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
|
44 |
+
else:
|
45 |
+
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
|
46 |
+
|
47 |
+
def split(x):
|
48 |
+
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
|
49 |
+
|
50 |
+
def pad(x, p, i):
|
51 |
+
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
|
52 |
+
|
53 |
+
raw_tokens_list = tokenize(text)
|
54 |
+
tokens_list = []
|
55 |
+
|
56 |
+
for raw_tokens in raw_tokens_list:
|
57 |
+
raw_tokens_123 = split(raw_tokens)
|
58 |
+
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
|
59 |
+
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
|
60 |
+
tokens_list.append(raw_tokens_123)
|
61 |
+
|
62 |
+
tokens_list = torch.IntTensor(tokens_list).to(self.device)
|
63 |
+
|
64 |
+
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
|
65 |
+
y = transformer_encode(feed)
|
66 |
+
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
|
67 |
+
|
68 |
+
return z
|
69 |
+
|
70 |
+
|
71 |
+
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
|
72 |
+
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
|
73 |
+
h = self.heads
|
74 |
+
|
75 |
+
q = self.to_q(x)
|
76 |
+
context = default(context, x)
|
77 |
+
k = self.to_k(context)
|
78 |
+
v = self.to_v(context)
|
79 |
+
del context, x
|
80 |
+
|
81 |
+
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
82 |
+
|
83 |
+
limit = k.shape[0]
|
84 |
+
att_step = 1
|
85 |
+
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
|
86 |
+
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
|
87 |
+
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
|
88 |
+
|
89 |
+
q_chunks.reverse()
|
90 |
+
k_chunks.reverse()
|
91 |
+
v_chunks.reverse()
|
92 |
+
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
93 |
+
del k, q, v
|
94 |
+
for i in range(0, limit, att_step):
|
95 |
+
q_buffer = q_chunks.pop()
|
96 |
+
k_buffer = k_chunks.pop()
|
97 |
+
v_buffer = v_chunks.pop()
|
98 |
+
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
|
99 |
+
|
100 |
+
del k_buffer, q_buffer
|
101 |
+
# attention, what we cannot get enough of, by chunks
|
102 |
+
|
103 |
+
sim_buffer = sim_buffer.softmax(dim=-1)
|
104 |
+
|
105 |
+
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
|
106 |
+
del v_buffer
|
107 |
+
sim[i:i + att_step, :, :] = sim_buffer
|
108 |
+
|
109 |
+
del sim_buffer
|
110 |
+
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
111 |
+
return self.to_out(sim)
|
cldm/logger.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from PIL import Image
|
7 |
+
from pytorch_lightning.callbacks import Callback
|
8 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
9 |
+
|
10 |
+
|
11 |
+
class ImageLogger(Callback):
|
12 |
+
def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
|
13 |
+
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
|
14 |
+
log_images_kwargs=None):
|
15 |
+
super().__init__()
|
16 |
+
self.rescale = rescale
|
17 |
+
self.batch_freq = batch_frequency
|
18 |
+
self.max_images = max_images
|
19 |
+
if not increase_log_steps:
|
20 |
+
self.log_steps = [self.batch_freq]
|
21 |
+
self.clamp = clamp
|
22 |
+
self.disabled = disabled
|
23 |
+
self.log_on_batch_idx = log_on_batch_idx
|
24 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
25 |
+
self.log_first_step = log_first_step
|
26 |
+
|
27 |
+
@rank_zero_only
|
28 |
+
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
|
29 |
+
root = os.path.join(save_dir, "image_log", split)
|
30 |
+
for k in images:
|
31 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
32 |
+
if self.rescale:
|
33 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
34 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
35 |
+
grid = grid.numpy()
|
36 |
+
grid = (grid * 255).astype(np.uint8)
|
37 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
|
38 |
+
path = os.path.join(root, filename)
|
39 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
40 |
+
Image.fromarray(grid).save(path)
|
41 |
+
|
42 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
43 |
+
check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
|
44 |
+
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
|
45 |
+
hasattr(pl_module, "log_images") and
|
46 |
+
callable(pl_module.log_images) and
|
47 |
+
self.max_images > 0):
|
48 |
+
logger = type(pl_module.logger)
|
49 |
+
|
50 |
+
is_train = pl_module.training
|
51 |
+
if is_train:
|
52 |
+
pl_module.eval()
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
|
56 |
+
|
57 |
+
for k in images:
|
58 |
+
N = min(images[k].shape[0], self.max_images)
|
59 |
+
images[k] = images[k][:N]
|
60 |
+
if isinstance(images[k], torch.Tensor):
|
61 |
+
images[k] = images[k].detach().cpu()
|
62 |
+
if self.clamp:
|
63 |
+
images[k] = torch.clamp(images[k], -1., 1.)
|
64 |
+
|
65 |
+
self.log_local(pl_module.logger.save_dir, split, images,
|
66 |
+
pl_module.global_step, pl_module.current_epoch, batch_idx)
|
67 |
+
|
68 |
+
if is_train:
|
69 |
+
pl_module.train()
|
70 |
+
|
71 |
+
def check_frequency(self, check_idx):
|
72 |
+
return check_idx % self.batch_freq == 0
|
73 |
+
|
74 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
75 |
+
if not self.disabled:
|
76 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
cldm/model.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from ldm.util import instantiate_from_config
|
6 |
+
|
7 |
+
|
8 |
+
def get_state_dict(d):
|
9 |
+
return d.get('state_dict', d)
|
10 |
+
|
11 |
+
|
12 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
13 |
+
_, extension = os.path.splitext(ckpt_path)
|
14 |
+
if extension.lower() == ".safetensors":
|
15 |
+
import safetensors.torch
|
16 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
17 |
+
else:
|
18 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
19 |
+
state_dict = get_state_dict(state_dict)
|
20 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
21 |
+
return state_dict
|
22 |
+
|
23 |
+
|
24 |
+
def create_model(config_path, cond_stage_path=None):
|
25 |
+
config = OmegaConf.load(config_path)
|
26 |
+
if cond_stage_path:
|
27 |
+
config.model.params.cond_stage_config.params.version = cond_stage_path # use pre-downloaded ckpts, in case blocked
|
28 |
+
model = instantiate_from_config(config.model).cpu()
|
29 |
+
print(f'Loaded model config from [{config_path}]')
|
30 |
+
return model
|
cldm/recognizer.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
'''
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
import traceback
|
11 |
+
from easydict import EasyDict as edict
|
12 |
+
import time
|
13 |
+
from ocr_recog.RecModel import RecModel
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from skimage.transform._geometric import _umeyama as get_sym_mat
|
17 |
+
|
18 |
+
|
19 |
+
def min_bounding_rect(img):
|
20 |
+
ret, thresh = cv2.threshold(img, 127, 255, 0)
|
21 |
+
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
22 |
+
if len(contours) == 0:
|
23 |
+
print('Bad contours, using fake bbox...')
|
24 |
+
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
|
25 |
+
max_contour = max(contours, key=cv2.contourArea)
|
26 |
+
rect = cv2.minAreaRect(max_contour)
|
27 |
+
box = cv2.boxPoints(rect)
|
28 |
+
box = np.int0(box)
|
29 |
+
# sort
|
30 |
+
x_sorted = sorted(box, key=lambda x: x[0])
|
31 |
+
left = x_sorted[:2]
|
32 |
+
right = x_sorted[2:]
|
33 |
+
left = sorted(left, key=lambda x: x[1])
|
34 |
+
(tl, bl) = left
|
35 |
+
right = sorted(right, key=lambda x: x[1])
|
36 |
+
(tr, br) = right
|
37 |
+
if tl[1] > bl[1]:
|
38 |
+
(tl, bl) = (bl, tl)
|
39 |
+
if tr[1] > br[1]:
|
40 |
+
(tr, br) = (br, tr)
|
41 |
+
return np.array([tl, tr, br, bl])
|
42 |
+
|
43 |
+
|
44 |
+
def adjust_image(box, img):
|
45 |
+
pts1 = np.float32([box[0], box[1], box[2], box[3]])
|
46 |
+
width = max(np.linalg.norm(pts1[0]-pts1[1]), np.linalg.norm(pts1[2]-pts1[3]))
|
47 |
+
height = max(np.linalg.norm(pts1[0]-pts1[3]), np.linalg.norm(pts1[1]-pts1[2]))
|
48 |
+
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
|
49 |
+
# get transform matrix
|
50 |
+
M = get_sym_mat(pts1, pts2, estimate_scale=True)
|
51 |
+
C, H, W = img.shape
|
52 |
+
T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]])
|
53 |
+
theta = np.linalg.inv(T @ M @ np.linalg.inv(T))
|
54 |
+
theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device)
|
55 |
+
grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True)
|
56 |
+
result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True)
|
57 |
+
result = torch.clamp(result.squeeze(0), 0, 255)
|
58 |
+
# crop
|
59 |
+
result = result[:, :int(height), :int(width)]
|
60 |
+
return result
|
61 |
+
|
62 |
+
|
63 |
+
'''
|
64 |
+
mask: numpy.ndarray, mask of textual, HWC
|
65 |
+
src_img: torch.Tensor, source image, CHW
|
66 |
+
'''
|
67 |
+
def crop_image(src_img, mask):
|
68 |
+
box = min_bounding_rect(mask)
|
69 |
+
result = adjust_image(box, src_img)
|
70 |
+
if len(result.shape) == 2:
|
71 |
+
result = torch.stack([result]*3, axis=-1)
|
72 |
+
return result
|
73 |
+
|
74 |
+
|
75 |
+
def create_predictor(model_dir=None, model_lang='ch', is_onnx=False):
|
76 |
+
model_file_path = model_dir
|
77 |
+
if model_file_path is not None and not os.path.exists(model_file_path):
|
78 |
+
raise ValueError("not find model file path {}".format(model_file_path))
|
79 |
+
|
80 |
+
if is_onnx:
|
81 |
+
import onnxruntime as ort
|
82 |
+
sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider']) # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
|
83 |
+
return sess
|
84 |
+
else:
|
85 |
+
if model_lang == 'ch':
|
86 |
+
n_class = 6625
|
87 |
+
elif model_lang == 'en':
|
88 |
+
n_class = 97
|
89 |
+
else:
|
90 |
+
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
|
91 |
+
rec_config = edict(
|
92 |
+
in_channels=3,
|
93 |
+
backbone=edict(type='MobileNetV1Enhance', scale=0.5, last_conv_stride=[1, 2], last_pool_type='avg'),
|
94 |
+
neck=edict(type='SequenceEncoder', encoder_type="svtr", dims=64, depth=2, hidden_dims=120, use_guide=True),
|
95 |
+
head=edict(type='CTCHead', fc_decay=0.00001, out_channels=n_class, return_feats=True)
|
96 |
+
)
|
97 |
+
|
98 |
+
rec_model = RecModel(rec_config)
|
99 |
+
if model_file_path is not None:
|
100 |
+
rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu"))
|
101 |
+
rec_model.eval()
|
102 |
+
return rec_model.eval()
|
103 |
+
|
104 |
+
|
105 |
+
def _check_image_file(path):
|
106 |
+
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'}
|
107 |
+
return any([path.lower().endswith(e) for e in img_end])
|
108 |
+
|
109 |
+
|
110 |
+
def get_image_file_list(img_file):
|
111 |
+
imgs_lists = []
|
112 |
+
if img_file is None or not os.path.exists(img_file):
|
113 |
+
raise Exception("not found any img file in {}".format(img_file))
|
114 |
+
if os.path.isfile(img_file) and _check_image_file(img_file):
|
115 |
+
imgs_lists.append(img_file)
|
116 |
+
elif os.path.isdir(img_file):
|
117 |
+
for single_file in os.listdir(img_file):
|
118 |
+
file_path = os.path.join(img_file, single_file)
|
119 |
+
if os.path.isfile(file_path) and _check_image_file(file_path):
|
120 |
+
imgs_lists.append(file_path)
|
121 |
+
if len(imgs_lists) == 0:
|
122 |
+
raise Exception("not found any img file in {}".format(img_file))
|
123 |
+
imgs_lists = sorted(imgs_lists)
|
124 |
+
return imgs_lists
|
125 |
+
|
126 |
+
|
127 |
+
class TextRecognizer(object):
|
128 |
+
def __init__(self, args, predictor):
|
129 |
+
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
130 |
+
self.rec_batch_num = args.rec_batch_num
|
131 |
+
self.predictor = predictor
|
132 |
+
self.chars = self.get_char_dict(args.rec_char_dict_path)
|
133 |
+
self.char2id = {x: i for i, x in enumerate(self.chars)}
|
134 |
+
self.is_onnx = not isinstance(self.predictor, torch.nn.Module)
|
135 |
+
|
136 |
+
# img: CHW
|
137 |
+
def resize_norm_img(self, img, max_wh_ratio):
|
138 |
+
imgC, imgH, imgW = self.rec_image_shape
|
139 |
+
assert imgC == img.shape[0]
|
140 |
+
imgW = int((imgH * max_wh_ratio))
|
141 |
+
|
142 |
+
h, w = img.shape[1:]
|
143 |
+
ratio = w / float(h)
|
144 |
+
if math.ceil(imgH * ratio) > imgW:
|
145 |
+
resized_w = imgW
|
146 |
+
else:
|
147 |
+
resized_w = int(math.ceil(imgH * ratio))
|
148 |
+
resized_image = torch.nn.functional.interpolate(
|
149 |
+
img.unsqueeze(0),
|
150 |
+
size=(imgH, resized_w),
|
151 |
+
mode='bilinear',
|
152 |
+
align_corners=True,
|
153 |
+
)
|
154 |
+
resized_image /= 255.0
|
155 |
+
resized_image -= 0.5
|
156 |
+
resized_image /= 0.5
|
157 |
+
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
|
158 |
+
padding_im[:, :, 0:resized_w] = resized_image[0]
|
159 |
+
return padding_im
|
160 |
+
|
161 |
+
# img_list: list of tensors with shape chw 0-255
|
162 |
+
def pred_imglist(self, img_list, show_debug=False, is_ori=False):
|
163 |
+
img_num = len(img_list)
|
164 |
+
assert img_num > 0
|
165 |
+
# Calculate the aspect ratio of all text bars
|
166 |
+
width_list = []
|
167 |
+
for img in img_list:
|
168 |
+
width_list.append(img.shape[2] / float(img.shape[1]))
|
169 |
+
# Sorting can speed up the recognition process
|
170 |
+
indices = torch.from_numpy(np.argsort(np.array(width_list)))
|
171 |
+
batch_num = self.rec_batch_num
|
172 |
+
preds_all = [None] * img_num
|
173 |
+
preds_neck_all = [None] * img_num
|
174 |
+
for beg_img_no in range(0, img_num, batch_num):
|
175 |
+
end_img_no = min(img_num, beg_img_no + batch_num)
|
176 |
+
norm_img_batch = []
|
177 |
+
|
178 |
+
imgC, imgH, imgW = self.rec_image_shape[:3]
|
179 |
+
max_wh_ratio = imgW / imgH
|
180 |
+
for ino in range(beg_img_no, end_img_no):
|
181 |
+
h, w = img_list[indices[ino]].shape[1:]
|
182 |
+
if h > w * 1.2:
|
183 |
+
img = img_list[indices[ino]]
|
184 |
+
img = torch.transpose(img, 1, 2).flip(dims=[1])
|
185 |
+
img_list[indices[ino]] = img
|
186 |
+
h, w = img.shape[1:]
|
187 |
+
# wh_ratio = w * 1.0 / h
|
188 |
+
# max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio
|
189 |
+
for ino in range(beg_img_no, end_img_no):
|
190 |
+
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
|
191 |
+
norm_img = norm_img.unsqueeze(0)
|
192 |
+
norm_img_batch.append(norm_img)
|
193 |
+
norm_img_batch = torch.cat(norm_img_batch, dim=0)
|
194 |
+
if show_debug:
|
195 |
+
for i in range(len(norm_img_batch)):
|
196 |
+
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
|
197 |
+
_img = (_img + 0.5)*255
|
198 |
+
_img = _img[:, :, ::-1]
|
199 |
+
file_name = f'{indices[beg_img_no + i]}'
|
200 |
+
file_name = file_name + '_ori' if is_ori else file_name
|
201 |
+
cv2.imwrite(file_name + '.jpg', _img)
|
202 |
+
if self.is_onnx:
|
203 |
+
input_dict = {}
|
204 |
+
input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy()
|
205 |
+
outputs = self.predictor.run(None, input_dict)
|
206 |
+
preds = {}
|
207 |
+
preds['ctc'] = torch.from_numpy(outputs[0])
|
208 |
+
preds['ctc_neck'] = [torch.zeros(1)] * img_num
|
209 |
+
else:
|
210 |
+
preds = self.predictor(norm_img_batch)
|
211 |
+
for rno in range(preds['ctc'].shape[0]):
|
212 |
+
preds_all[indices[beg_img_no + rno]] = preds['ctc'][rno]
|
213 |
+
preds_neck_all[indices[beg_img_no + rno]] = preds['ctc_neck'][rno]
|
214 |
+
|
215 |
+
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)
|
216 |
+
|
217 |
+
def get_char_dict(self, character_dict_path):
|
218 |
+
character_str = []
|
219 |
+
with open(character_dict_path, "rb") as fin:
|
220 |
+
lines = fin.readlines()
|
221 |
+
for line in lines:
|
222 |
+
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
223 |
+
character_str.append(line)
|
224 |
+
dict_character = list(character_str)
|
225 |
+
dict_character = ['sos'] + dict_character + [' '] # eos is space
|
226 |
+
return dict_character
|
227 |
+
|
228 |
+
def get_text(self, order):
|
229 |
+
char_list = [self.chars[text_id] for text_id in order]
|
230 |
+
return ''.join(char_list)
|
231 |
+
|
232 |
+
def decode(self, mat):
|
233 |
+
text_index = mat.detach().cpu().numpy().argmax(axis=1)
|
234 |
+
ignored_tokens = [0]
|
235 |
+
selection = np.ones(len(text_index), dtype=bool)
|
236 |
+
selection[1:] = text_index[1:] != text_index[:-1]
|
237 |
+
for ignored_token in ignored_tokens:
|
238 |
+
selection &= text_index != ignored_token
|
239 |
+
return text_index[selection], np.where(selection)[0]
|
240 |
+
|
241 |
+
def get_ctcloss(self, preds, gt_text, weight):
|
242 |
+
if not isinstance(weight, torch.Tensor):
|
243 |
+
weight = torch.tensor(weight).to(preds.device)
|
244 |
+
ctc_loss = torch.nn.CTCLoss(reduction='none')
|
245 |
+
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC
|
246 |
+
targets = []
|
247 |
+
target_lengths = []
|
248 |
+
for t in gt_text:
|
249 |
+
targets += [self.char2id.get(i, len(self.chars)-1) for i in t]
|
250 |
+
target_lengths += [len(t)]
|
251 |
+
targets = torch.tensor(targets).to(preds.device)
|
252 |
+
target_lengths = torch.tensor(target_lengths).to(preds.device)
|
253 |
+
input_lengths = torch.tensor([log_probs.shape[0]]*(log_probs.shape[1])).to(preds.device)
|
254 |
+
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
|
255 |
+
loss = loss / input_lengths * weight
|
256 |
+
return loss
|
257 |
+
|
258 |
+
|
259 |
+
def main():
|
260 |
+
rec_model_dir = "./ocr_weights/ppv3_rec.pth"
|
261 |
+
predictor = create_predictor(rec_model_dir)
|
262 |
+
args = edict()
|
263 |
+
args.rec_image_shape = "3, 48, 320"
|
264 |
+
args.rec_char_dict_path = './ocr_weights/ppocr_keys_v1.txt'
|
265 |
+
args.rec_batch_num = 6
|
266 |
+
text_recognizer = TextRecognizer(args, predictor)
|
267 |
+
image_dir = './test_imgs_cn'
|
268 |
+
gt_text = ['韩国小馆']*14
|
269 |
+
|
270 |
+
image_file_list = get_image_file_list(image_dir)
|
271 |
+
valid_image_file_list = []
|
272 |
+
img_list = []
|
273 |
+
|
274 |
+
for image_file in image_file_list:
|
275 |
+
img = cv2.imread(image_file)
|
276 |
+
if img is None:
|
277 |
+
print("error in loading image:{}".format(image_file))
|
278 |
+
continue
|
279 |
+
valid_image_file_list.append(image_file)
|
280 |
+
img_list.append(torch.from_numpy(img).permute(2, 0, 1).float())
|
281 |
+
try:
|
282 |
+
tic = time.time()
|
283 |
+
times = []
|
284 |
+
for i in range(10):
|
285 |
+
preds, _ = text_recognizer.pred_imglist(img_list) # get text
|
286 |
+
preds_all = preds.softmax(dim=2)
|
287 |
+
times += [(time.time()-tic)*1000.]
|
288 |
+
tic = time.time()
|
289 |
+
print(times)
|
290 |
+
print(np.mean(times[1:]) / len(preds_all))
|
291 |
+
weight = np.ones(len(gt_text))
|
292 |
+
loss = text_recognizer.get_ctcloss(preds, gt_text, weight)
|
293 |
+
for i in range(len(valid_image_file_list)):
|
294 |
+
pred = preds_all[i]
|
295 |
+
order, idx = text_recognizer.decode(pred)
|
296 |
+
text = text_recognizer.get_text(order)
|
297 |
+
print(f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}')
|
298 |
+
except Exception as E:
|
299 |
+
print(traceback.format_exc(), E)
|
300 |
+
|
301 |
+
|
302 |
+
if __name__ == "__main__":
|
303 |
+
main()
|
dataset_util.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import json
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
__all__ = ['load', 'save', 'show_bbox_on_image']
|
6 |
+
|
7 |
+
|
8 |
+
def load(file_path: str):
|
9 |
+
file_path = pathlib.Path(file_path)
|
10 |
+
func_dict = {'.txt': load_txt, '.json': load_json, '.list': load_txt}
|
11 |
+
assert file_path.suffix in func_dict
|
12 |
+
return func_dict[file_path.suffix](file_path)
|
13 |
+
|
14 |
+
|
15 |
+
def load_txt(file_path: str):
|
16 |
+
with open(file_path, 'r', encoding='utf8') as f:
|
17 |
+
content = [x.strip().strip('\ufeff').strip('\xef\xbb\xbf') for x in f.readlines()]
|
18 |
+
return content
|
19 |
+
|
20 |
+
|
21 |
+
def load_json(file_path: str):
|
22 |
+
with open(file_path, 'r', encoding='utf8') as f:
|
23 |
+
content = json.load(f)
|
24 |
+
return content
|
25 |
+
|
26 |
+
|
27 |
+
def save(data, file_path):
|
28 |
+
file_path = pathlib.Path(file_path)
|
29 |
+
func_dict = {'.txt': save_txt, '.json': save_json}
|
30 |
+
assert file_path.suffix in func_dict
|
31 |
+
return func_dict[file_path.suffix](data, file_path)
|
32 |
+
|
33 |
+
|
34 |
+
def save_txt(data, file_path):
|
35 |
+
if not isinstance(data, list):
|
36 |
+
data = [data]
|
37 |
+
with open(file_path, mode='w', encoding='utf8') as f:
|
38 |
+
f.write('\n'.join(data))
|
39 |
+
|
40 |
+
|
41 |
+
def save_json(data, file_path):
|
42 |
+
with open(file_path, 'w', encoding='utf-8') as json_file:
|
43 |
+
json.dump(data, json_file, ensure_ascii=False, indent=4)
|
44 |
+
|
45 |
+
|
46 |
+
def show_bbox_on_image(image, polygons=None, txt=None, color=None, font_path='./font/Arial_Unicode.ttf'):
|
47 |
+
from PIL import ImageDraw, ImageFont
|
48 |
+
image = image.convert('RGB')
|
49 |
+
draw = ImageDraw.Draw(image)
|
50 |
+
if len(txt) == 0:
|
51 |
+
txt = None
|
52 |
+
if color is None:
|
53 |
+
color = (255, 0, 0)
|
54 |
+
if txt is not None:
|
55 |
+
font = ImageFont.truetype(font_path, 20)
|
56 |
+
for i, box in enumerate(polygons):
|
57 |
+
box = box[0]
|
58 |
+
if txt is not None:
|
59 |
+
draw.text((int(box[0][0]) + 20, int(box[0][1]) - 20), str(txt[i]), fill='red', font=font)
|
60 |
+
for j in range(len(box) - 1):
|
61 |
+
draw.line((box[j][0], box[j][1], box[j + 1][0], box[j + 1][1]), fill=color, width=2)
|
62 |
+
draw.line((box[-1][0], box[-1][1], box[0][0], box[0][1]), fill=color, width=2)
|
63 |
+
return image
|
64 |
+
|
65 |
+
|
66 |
+
def show_glyphs(glyphs, name):
|
67 |
+
import numpy as np
|
68 |
+
import cv2
|
69 |
+
size = 64
|
70 |
+
gap = 5
|
71 |
+
n_char = 20
|
72 |
+
canvas = np.ones((size, size*n_char + gap*(n_char-1), 1))*0.5
|
73 |
+
x = 0
|
74 |
+
for i in range(glyphs.shape[-1]):
|
75 |
+
canvas[:, x:x + size, :] = glyphs[..., i:i+1]
|
76 |
+
x += size+gap
|
77 |
+
cv2.imwrite(name, canvas*255)
|
example_images/banner.png
ADDED
example_images/edit1.png
ADDED
example_images/edit10.png
ADDED
example_images/edit11.png
ADDED
example_images/edit12.png
ADDED
example_images/edit13.png
ADDED
example_images/edit14.png
ADDED
example_images/edit2.png
ADDED
example_images/edit3.png
ADDED
example_images/edit4.png
ADDED
example_images/edit5.png
ADDED
example_images/edit6.png
ADDED
example_images/edit7.png
ADDED
example_images/edit8.png
ADDED
example_images/edit9.png
ADDED
example_images/gen1.png
ADDED
example_images/gen10.png
ADDED
example_images/gen11.png
ADDED
example_images/gen12.png
ADDED
example_images/gen13.png
ADDED
example_images/gen14.png
ADDED
example_images/gen15.png
ADDED
example_images/gen16.png
ADDED
example_images/gen2.png
ADDED
example_images/gen3.png
ADDED
example_images/gen4.png
ADDED
example_images/gen5.png
ADDED
example_images/gen6.png
ADDED
example_images/gen7.png
ADDED
example_images/gen8.png
ADDED
example_images/gen9.png
ADDED
example_images/ref1.jpg
ADDED
example_images/ref10.jpg
ADDED
example_images/ref11.jpg
ADDED
example_images/ref12.png
ADDED
example_images/ref13.jpg
ADDED
example_images/ref14.png
ADDED
example_images/ref2.jpg
ADDED
example_images/ref3.jpg
ADDED