File size: 4,504 Bytes
55892cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcddaaf
55892cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c5bb2
 
 
 
 
55892cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9633082
 
55892cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c5bb2
 
55892cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
os.system("git clone https://github.com/modelscope/DiffSynth-Studio.git")
os.system("cp -r DiffSynth-Studio/diffsynth ./")
os.system("pip install -r DiffSynth-Studio/requirements.txt")
from diffsynth import save_video, ModelManager, SVDVideoPipeline
from diffsynth import ModelManager
import torch, os, random, time
import gradio as gr
import numpy as np
from PIL import Image
import spaces


def get_i2v_pipeline():
    model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
                                 model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"],
                                 downloading_priority=["HuggingFace"])
    pipe = SVDVideoPipeline.from_model_manager(model_manager)
    return pipe


@spaces.GPU(duration=280)
def sample(image, seed, randomize_seed, motion_bucket_id, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, 10**8)
    torch.manual_seed(seed)
    video = pipe(
        input_image=image.resize((512, 512)),
        num_frames=128, fps=30, height=512, width=512,
        motion_bucket_id=motion_bucket_id,
        num_inference_steps=num_inference_steps,
        min_cfg_scale=2, max_cfg_scale=2, contrast_enhance_scale=1.2
    )
    file_path = f"videos/{time.time_ns()}.mp4"
    os.makedirs("videos", exist_ok=True)
    save_video(video, file_path, fps=30, quality=7)
    return file_path, seed


def crop_and_resize(image):
    height = 512
    width = 512
    image = np.array(image)
    image_height, image_width, _ = image.shape
    if image_height / image_width < height / width:
        croped_width = int(image_height / height * width)
        left = (image_width - croped_width) // 2
        image = image[:, left: left+croped_width]
        image = Image.fromarray(image).convert("RGB").resize((width, height))
    else:
        croped_height = int(image_width / width * height)
        left = (image_height - croped_height) // 2
        image = image[left: left+croped_height, :]
        image = Image.fromarray(image).convert("RGB").resize((width, height))
    return image


pipe = get_i2v_pipeline()

def process_examples(image):
    file_path, seed = sample(image, seed=0, randomize_seed=True, motion_bucket_id=100, num_inference_steps=25 )
    return file_path, seed
    
with gr.Blocks() as demo:
    gr.Markdown('''
# ExVideo

ExVideo is a post-tuning technique aimed at enhancing the capability of video generation models. We have extended Stable Video Diffusion to achieve the generation of long videos up to 128 frames.

This is the first model we have made public. Due to limitations in computational resources, this model was trained on about 40,000 videos using 8x A100 GPUs for approximately one week. Therefore, the model may sometimes generate content that does not conform to real-world principles. Please look forward to the release of our subsequent models.

To use this model, please refer to [DiffSynth](https://github.com/modelscope/DiffSynth-Studio).

* [Project Page](https://ecnu-cilab.github.io/ExVideoProjectPage/)
* [Source Code](https://github.com/modelscope/DiffSynth-Studio)
* [Technical report](https://arxiv.org/abs/2406.14130)
''')
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image", type="pil")
            generate_btn = gr.Button(value="Animate", variant="primary")
        video = gr.Video(label="Generated video", autoplay=True)
    with gr.Accordion("Advanced options", open=False):
        seed = gr.Slider(label="Seed", value=0, randomize=True, minimum=0, maximum=10**8, step=1)
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to synthesize", value=100, minimum=0, maximum=127)
        num_inference_steps = gr.Slider(label="Inference steps", value=25, minimum=1, maximum=50)
        
    image.upload(fn=crop_and_resize, inputs=image, outputs=image, queue=False)
    generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, num_inference_steps], outputs=[video, seed], api_name="video")
    gr.Examples(
        examples=[
            "images/0.png",
            "images/1.png",
            "images/2.png",
            "images/3.png",
            "images/4.png"
        ],
        inputs=image,
        outputs=[video, seed],
        fn=process_examples,
        cache_examples="lazy",
    )

if __name__ == "__main__":
    demo.launch()